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Infrastructure @ KISTI-GSDC

KISTI-GSDC

KISTI Provides Tier 1 center for ALICE, Tier 2 center for CMS
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About GPU machine

B Server Spec H System environment
< Server Product : Dell R730 (2U) S 0S : CentOS7
2 CPU : 2x Xeon 2.6GHz 14Core < Driver Version: 396.26
> RAM : 384GB 2 CUDA 9.2 + cuDNN v7.14
2 GPU : NVIDIA P100 2 Compute Mode
— Double-Precision : 4.7TFLOPS — Exclusive Process Mode

— Single-Precision : 9.3TFLOPS

KISTI-GSDC Introduction to GSDC - data center for data intensive research



Deep Learning in High-Energy Physics

& Many efforts with deep learning in a variety of settings

¢ Classification in physics object reconstruction
& Track reconstruction — complicated hit patterns

& Jet flavor tagging — particle kinematic information

¢ Distinguishing new physics”from Standard Model signatures with complicated event topologies
¢ Original and creative new ways
& Keeping abreast with new developments

¢ Modifying to our data and our needs

& Are we learning about properties of these algorithms?



Deep Learning

& Deep neural network as a universal function approximator

Tree

5 . . AdaB
& Classification: f: R™ - {1, ..., k} 1| Desision

¢ Decide among k-classes

& Regression: f: R™ - R™

& Predict real-valued outputs

& For a DNN, crafting sensitive variables

(feature inputs) 1s less crucial
Mass reconstruction using 4-vectors

in a two-body decay



Properties of a DNN
Top-jet Tagging



Top-jet tagging

& For a high momentum top quark, three quarks from the top decay can fall within a single
jet cone — a “top-jet”

& Top-jet tagging algorithm
¢ Distinguish between top-jet, W-jet and QCD jet

& Makes use of energy distribution inside the jet

& N-subjettiness 1s a theoretically well-motivated infrared safe observable

& What about algorithms using deep neural network?



Top-jet tagging with DNN

©® CNN Network architecture
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Deep NN with N-subjettiness

& Setup
& PYTHIAG6 generated top quark to hadronic decays

& 800 < pr < 900 GeV, |n| < 2.0,
130 < m; < 210 GeV

¢ Performance comparable to using jet energy
depositions

& 24 inputs - 74, Ty, T3, T4 With f =
0.1,0.25,0.5,1,1.5,2

¢ 3 hidden layers (48, 48, 16) used

¢ Performances comparable, but, there is crucial 2l & SRS S
difference Top Tag Efficiency
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Infrared safe property of a DNN top-jet tagging
algorithm

& A DNN based on using N-subjettiness will be infrared-safe

& The feature inputs t; variables are infrared-safe

& Is a DNN based on energy distribution infrared safe?
¢ Important property for a physically meaningful result
¢ Collinear gluon emission

¢ Soft gluon emission
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Infrared safety property of a DNN Top-jet tagger
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https://arxiv.org/abs/1806.01263

Infrared safety property of a DNN
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Directions of deep learning

& Learning something from the data itself
& Anomaly detection without specific NP model
¢ So called “model independent”

¢ Without assuming shape of excess

& Generating fake data mimicking real ones
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Searching for Anomaly

& Predict backgrounds from side-band data
¢ No assumption on the shape of signal except width
¢ Backgrounds: side band events. Signal: events in signal mass region
¢ Train classifier using variables nearly uncorrelated with mass

& Inpp->W' > W + X(—» WW)

¢ For a massive W’, boosted W-jets: Jet substructure variables

J. H. Collins, K. Howe, B. Nachman
arXiv:1805.02664
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R. D’Agnolo and A. Wulzer

SeaI’ChlIlg for anomaly arXiv:1806.02350

& New physics signature could take on many different shapes, not always a gaussian bump

& Parametrize the difference between reference data (null hypothesis) and observed data using
a NN

n(x|w) = n(x|R) e/ Ew)

& Using a test-statistic based on maximum-likelihood principle, observed p-value calculated
from

Pobs = J P(th) dt
t

obs
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INPUT

Data sample D

10°

Reference sample R

10°)

Searching for anomaly

ouTPUT

Dist. log ratio

) ~ log n(z|T)
=8 n(z|R)

N—r1(D) = ~2Min L[

R. D’Agnolo and A. Wulzer
arXiv:1806.02350
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Directions in Deep Learning in HEP

& Learning from data itself
& Approximating observed probability density function

¢ Anomaly detection

¢ Why do we want to do that?

& Some processes are copious yet difficult to get it right or difficult (or time-consuming) to simulate
correctly

¢ Model-independent way of finding new physics
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Generative methods

& Learn from data and generates fake data that mimics the original
& Generative adversarial network (GAN)

¢ Variational auto encoder (VAE)

¢® GAN

Update generator network
QG = QG o aVQGLn

fake repeat fake
real real
Real data Update discriminator network Real data

GD - GD o angLl HD 4 HD ol anDLn_l
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Applications of generative methods

& Simulating and Augmenting MC data

3-D energy deposition in calorimeter 69 EeV airshower

e* GEANT [ e* GAN an Simulation
y GEANT [y GAN o . D
n* GEANT m* GAN B a

== Refined Simulation

40 A0
Time Step

M. Paganini, L. Oliveira, B. Nachman M. Erdmann, L. Geiger, J. Glombitza, D. Schmidt
Phys.Rev. D97 (2018) 014021 arXiv:1802.03325
arXiv:1712.10321
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Outlook

& Progress in applying deep learning methods in classification problem in HEP

¢ Understanding properties of deep learning algorithm 1s important in making sense of its
outcome

¢ How we can make use of the big data
¢ Model-independent searches
¢ Faster simulated data generation

¢ Better modeling

® How can we make it assist us?
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