# Deep Learning Applications in HEP

Suyong Choi

Korea University

#### Outline

- ♦ Computing resources at KISTI
- ♦ Introduction
- Properties of deep learning in top-jet tagging
- ♦ Interesting directions
- Outlook

♦ Disclaimer: Personal preferences

#### Infrastructure @ KISTI-GSDC

#### KISTI Provides Tier 1 center for ALICE, Tier 2 center for CMS

It is impossible without expertise.



#### **About GPU machine**

- Server Spec
  - **⇒** Server Product : Dell R730 (2U)
  - **○** CPU: 2x Xeon 2.6GHz 14Core
  - **⇒** RAM : 384GB
  - **⇒** GPU : NVIDIA P100
    - Double-Precision: 4.7TFLOPS
    - Single-Precision: 9.3TFLOPS

- System environment
  - **○** OS : CentOS7
  - **⇒** Driver Version: 396.26
    - **○** CUDA 9.2 + cuDNN v7.14
  - **Compute Mode** 
    - ⇒ Exclusive Process Mode



## Deep Learning in High-Energy Physics

- Many efforts with deep learning in a variety of settings
  - Classification in physics object reconstruction
    - ♦ Track reconstruction complicated hit patterns
    - ♦ Jet flavor tagging particle kinematic information
  - ♦ Distinguishing new physics"from Standard Model signatures with complicated event topologies
- Original and creative new ways
  - ♦ Keeping abreast with new developments
  - Modifying to our data and our needs
- Are we learning about properties of these algorithms?

### Deep Learning

- ♦ Deep neural network as a universal function approximator
- $\diamond$  Classification:  $f: \mathbb{R}^n \to \{1, ..., k\}$ 
  - ♦ Decide among k-classes
- $\diamond$  Regression:  $f: \mathbb{R}^n \to \mathbb{R}^m$ 
  - ♦ Predict real-valued outputs
- ♦ For a DNN, crafting sensitive variables (feature inputs) is less crucial



Mass reconstruction using 4-vectors in a two-body decay

## Properties of a DNN Top-jet Tagging

#### Top-jet tagging

- ♦ For a high momentum top quark, three quarks from the top decay can fall within a single jet cone a "top-jet"
- ♦ Top-jet tagging algorithm
  - Distinguish between top-jet, W-jet and QCD jet
  - ♦ Makes use of energy distribution inside the jet
- ♦ N-subjettiness is a theoretically well-motivated infrared safe observable
- What about algorithms using deep neural network?

## Top-jet tagging with DNN

#### ♦ CNN Network architecture







#### Deep NN with N-subjettiness

- Setup
  - ♦ PYTHIA6 generated top quark to hadronic decays
  - \* 800 <  $p_T$  < 900 GeV,  $|\eta|$  < 2.0, 130 <  $m_I$  < 210 GeV
- Performance comparable to using jet energy depositions
  - $\Leftrightarrow$  24 inputs  $\tau_1$ ,  $\tau_2$ ,  $\tau_3$ ,  $\tau_4$  with  $\beta = 0.1, 0.25, 0.5, 1, 1.5, 2$
  - ♦ 3 hidden layers (48, 48, 16) used
- Performances comparable, but, there is crucial difference



## Infrared safe property of a DNN top-jet tagging algorithm

- ♦ A DNN based on using N-subjettiness will be infrared-safe
  - $\diamond$  The feature inputs  $\tau_i$  variables are infrared-safe
- ♦ Is a DNN based on energy distribution infrared safe?
  - ♦ Important property for a physically meaningful result
  - Collinear gluon emission
  - ♦ Soft gluon emission

#### Infrared safety property of a DNN Top-jet tagger

 $| \Leftrightarrow |\Delta_{NN}| = |NN_{qqq+g} - NN_{qqq_{merged}}|$ 



arXiv:1806.01263
S. Choi, S. Lee, M. Perelstein



## Infrared safety property of a DNN

 $| * | \Delta_{NN} | = | NN_{qqq+g} - NN_{qqq_{merged}} |$ 





$$p_{L,rat} = rac{ec{p}_q \cdot ec{p}_g}{ec{p}_q \cdot ec{p}_q}$$

## Directions of deep learning

- ♦ Learning something from the data itself
- ♦ Anomaly detection without specific NP model
  - ♦ So called "model independent"
  - Without assuming shape of excess
- Generating fake data mimicking real ones

## Searching for Anomaly

- ♦ Predict backgrounds from side-band data
  - No assumption on the shape of signal except width
  - ♦ Backgrounds: side band events. Signal: events in signal mass region
  - ♦ Train classifier using variables nearly uncorrelated with mass
- $\Leftrightarrow$  In  $pp \to W' \to W + X(\to WW)$ 
  - ♦ For a massive W', boosted W-jets: Jet substructure variables



J. H. Collins, K. Howe, B. Nachman arXiv:1805.02664

R. D'Agnolo and A. Wulzer arXiv:1806.02350

## Searching for anomaly

- New physics signature could take on many different shapes, not always a gaussian bump
- ♦ Parametrize the difference between reference data (null hypothesis) and observed data using a NN

$$n(\vec{x}|w) = n(\vec{x}|R) e^{f(\vec{x};w)}$$

 Using a test-statistic based on maximum-likelihood principle, observed p-value calculated from

$$p_{obs} = \int_{t_{obs}}^{\infty} P(t|R) dt$$

## Searching for anomaly





R. D'Agnolo and A. Wulzer arXiv:1806.02350

## Directions in Deep Learning in HEP

- ♦ Learning from data itself
  - Approximating observed probability density function
  - ♦ Anomaly detection
- Why do we want to do that?
  - ♦ Some processes are copious yet difficult to get it right or difficult (or time-consuming) to simulate correctly
  - ♦ Model-independent way of finding new physics

#### Generative methods

- ♦ Learn from data and generates fake data that mimics the original
  - ♦ Generative adversarial network (GAN)
  - ♦ Variational auto encoder (VAE)

#### ♦ GAN



## Applications of generative methods

#### Simulating and Augmenting MC data

#### 3-D energy deposition in calorimeter



M. Paganini, L. Oliveira, B. Nachman Phys.Rev. D97 (2018) 014021 arXiv:1712.10321

#### 69 EeV airshower



M. Erdmann, L. Geiger, J. Glombitza, D. Schmidt arXiv:1802.03325

#### Outlook

- Progress in applying deep learning methods in classification problem in HEP
- Understanding properties of deep learning algorithm is important in making sense of its outcome
- ♦ How we can make use of the big data
  - ♦ Model-independent searches
  - ♦ Faster simulated data generation
  - ♦ Better modeling
- ♦ How can we make it assist us?