

The ATLAS Trigger in 2017 and 2018 developments and performance

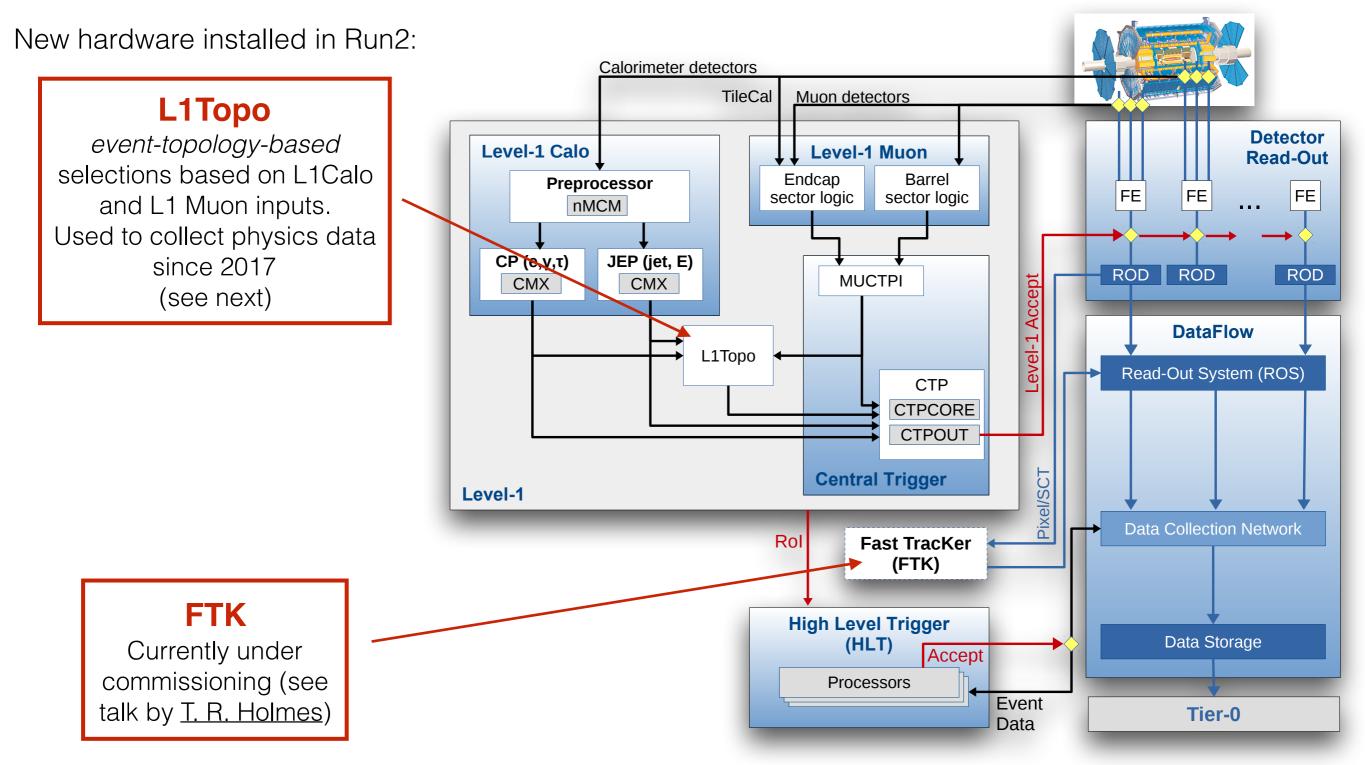
Daniele Zanzi (CERN) on behalf of the ATLAS Collaboration

ICHEP 2018, July 4-11, Seoul


Introduction

- Trigger system is responsible for real-time selection of subset of protonproton collisions to be recorded and analysed offline
 - design driven by physics priorities and resource/system limitations (eg *processing time, processing units and storage rate*)
- In 2017/2018, LHC delivered collisions at both record high instantaneous luminosity (x2 design value) and at record high number of simultaneous collisions per bunch crossing, "pileup" or µ (x2.6 design value)
- This talk summarises how the ATLAS trigger system adapted successfully to this challenging conditions
 - taking advantage of new hardware and
 - optimising trigger menu and reducing processing costs

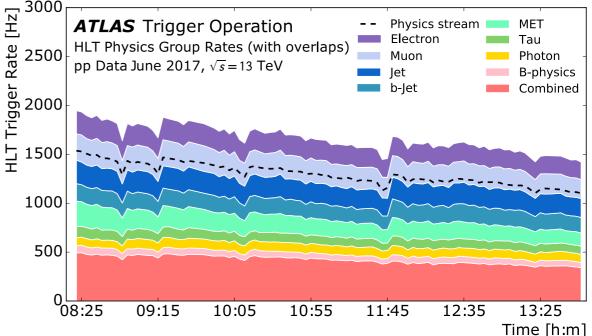
Trigger System


ATLAS Trigger in 2017/18 - ICHEP2018

(~1.2MB/evt average over fill)

D. Zanzi

Trigger System



Trigger Menu

- Set of algorithms and selections ("chains") running at the L1 and HLT
- O(1500) chains targeting different signatures and topological phase spaces
- Designed such that resources (rate, memory/timing and output) are allocated based on physics priorities

 Despite higher peak luminosity in 2017 than in 2016 (1.7 vs 1.4 x10³⁴ cm⁻²s⁻¹), minimum pt thresholds for single lepton chains kept unchanged

Trigger	Typical offline selection	Trigger Selection		Level-1 Peak	HLT Peak
		Level-1 (GeV)	HLT (GeV)	$\begin{array}{c} \textbf{Rate (kHz)} \\ L = 1.7 \times 10^{-2} \end{array}$	$\frac{\text{Rate (Hz)}}{\text{cm}^{-2}\text{s}^{-1}}$
Single leptons	Single isolated μ , $p_{\rm T} > 27 {\rm GeV}$	20	26 (i)	15	180
	Single isolated tight $e, p_{\rm T} > 27 \text{ GeV}$	22 (i)	26 (i)	28	180
	Single μ , $p_{\rm T} > 52 {\rm GeV}$	20	50	15	61
	Single $e, p_{\rm T} > 61 {\rm GeV}$	22 (i)	60	28	18
	Single τ , $p_{\rm T}$ > 170 GeV	100	160	1.2	47
Two leptons	Two μ , each $p_{\rm T} > 15 {\rm GeV}$	2 × 10	2 × 14	1.8	26
	Two μ , $p_{\rm T} > 23, 9 {\rm GeV}$	20	22, 8	15	42
	Two very loose e , each $p_{\rm T} > 18 {\rm GeV}$	2 × 15 (i)	2 × 17	1.7	12
	One <i>e</i> & one μ , $p_{\rm T} > 8,25 {\rm GeV}$	20 (µ)	7, 24	15	5
	One <i>e</i> & one μ , $p_{\rm T} > 18$, 15 GeV	15, 10	17, 14	2.0	4
	One e & one μ , $p_{\rm T} > 27, 9$ GeV	22 (e, i)	26, 8	28	3
	Two τ , $p_{\rm T}$ > 40, 30 GeV	20 (i), 12 (i) (+jets, topo)	35, 25	5	61
	One τ & one isolated μ , $p_{\rm T}$ > 30, 15 GeV	12 (i), 10 (+jets)	25, 14 (i)	2.1	10
	One τ & one isolated e , $p_{\rm T} > 30$, 18 GeV	12 (i), 15 (i) (+jets)	25, 17 (i)	4	15
One photon	One loose γ , $p_{\rm T} > 145 {\rm GeV}$	22 (i)	140	28	43
Two photons	Two loose γ , $p_{\rm T} > 55$, 55 GeV	2 × 20	50, 50	2.6	6
	Two medium γ , $p_{\rm T}$ > 40, 30 GeV	2 × 20	35, 25	2.6	17
	Two tight γ , $p_{\rm T} > 25$, 25 GeV	2 × 15 (i)	2 × 20 (i)	1.7	14
Single jet	Jet ($R = 0.4$), $p_{\rm T} > 435 {\rm GeV}$	100	420	3.3	33
	Jet $(R = 1.0), p_{\rm T} > 480 {\rm GeV}$	100	460	3.3	24
	Jet ($R = 1.0$), $p_{\rm T} > 450$ GeV, $m_{\rm jet} > 50$ GeV	100	420, $m_{\rm jet} > 40$	3.3	29
$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	50	110	5	110
	· ·			•	

Selection of 2017 menu (ATL-DAQ-PUB-2018-002), full table in backup

ATLAS Trigger in 2017/18 - ICHEP2018

Rate [kHz]

10 L

6000

5000

4000

3000

2000

1000

0

100

120

140

160

Rate [Hz]

ATLAS Trigger Operation

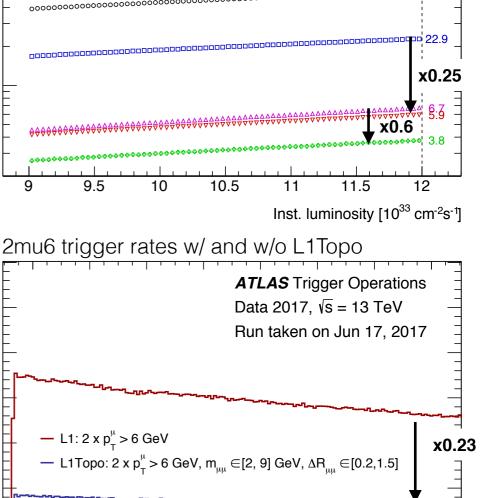
L1: p¹>20 GeV. p¹>12 GeV

L1: p¹>20 GeV, p²>12 GeV without isolation cut

L1Topo: p^{-τ}₋>20 GeV, p⁻²₋>12 GeV, Δ R(τ,τ₀)<2.9, p^{jet}₋>25 GeV

L1: p_{T}^{L2} GeV, p_{T}^{2} >12 GeV, p_{T}^{Het} >25 GeV L1Topo: p_{T}^{τ} >20 GeV, p_{T}^{τ} >12 GeV, Δ R(τ , τ_{2})<2.9

Data 2016, √s= 13 TeV


EXPERIMENT L1Topo: di-tau trigger rates for H→ττ (<u>ATLAS-CONF-2017-061</u>)

2017 Improvements at L1

- event-topology-based selections (eg angular and invariant mass cuts) in real time using L1Calo and L1Muon inputs
- critical for rate-demanding signals, like H→ττ and B physics measurements
- allows to trigger on difficult signatures, eg VBF H→bb, long-lived particles, and Higgsino to soft leptons
- At L1Muon:
 - single muon trigger rate significantly reduced at no efficiency loss thanks to improved chamber-by-chamber coincidence windows and new coincidence between Tile calorimeter and TCG muon chambers
- At L1Calo,

D. Zanzi

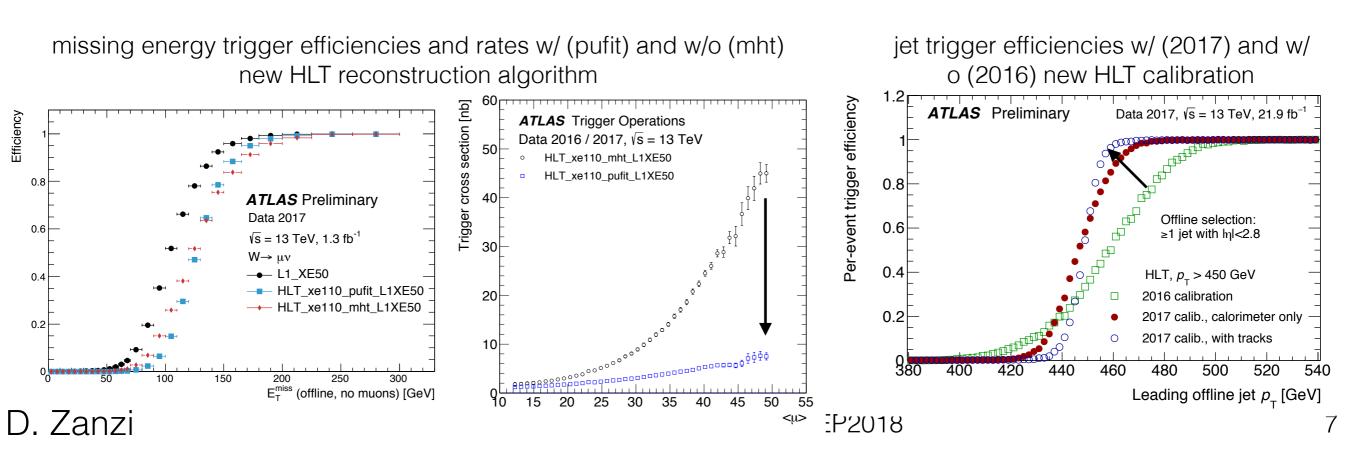
- filter coefficients and noise cuts optimised for high pileup conditions and different LHC filling schemes
- significantly reduced rates and pileup dependence at L1 for jet and missing energy chains
- reduced calorimeter occupancy and consequently improved reconstruction time at HLT

180

200

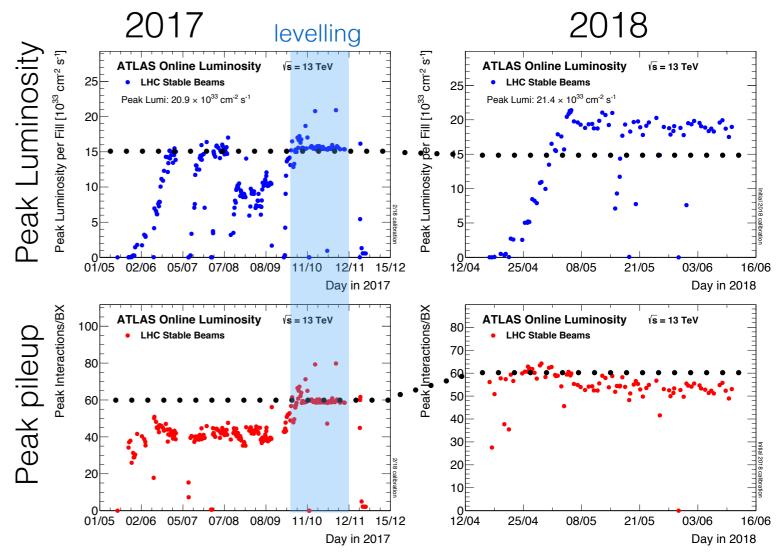
220

Luminosity block [~60s]

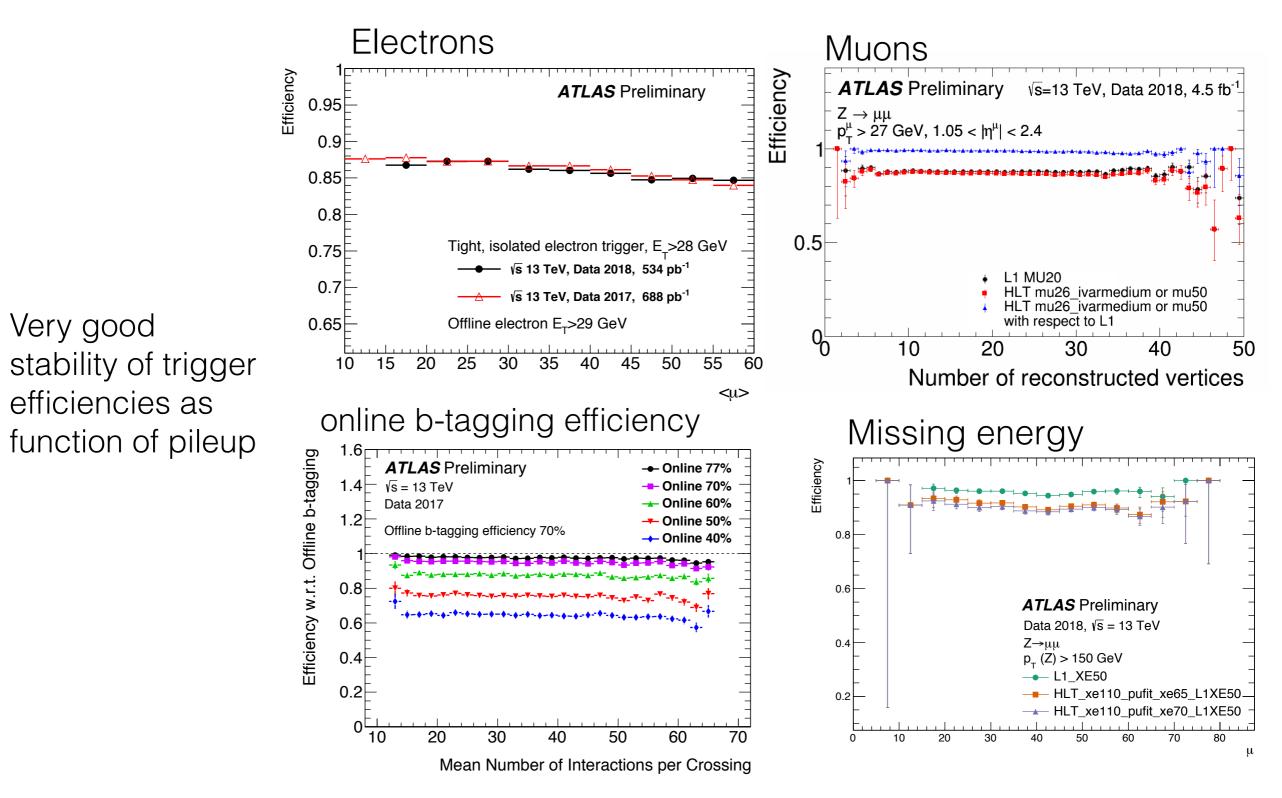

240

6

2017 Improvements at HLT

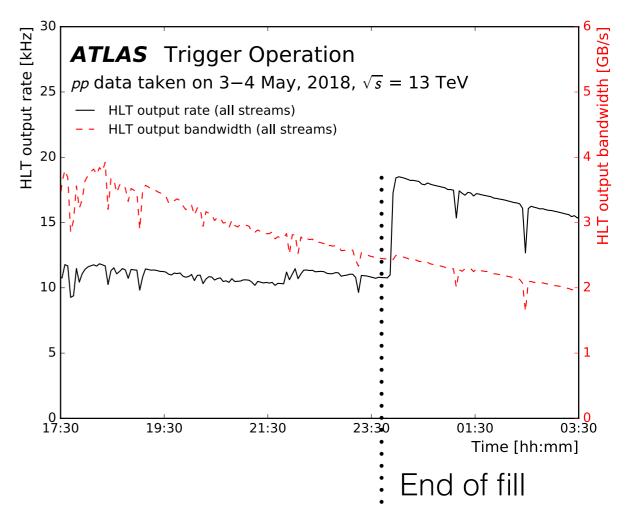

- Missing energy triggers:
 - new algorithm ("pufit") with improved pileup robustness
 - O(10) rate reduction at μ =50 with no efficiency loss allowed to keep 2017 threshold unchanged from 2016
- Offline-like calibration in HLT jet triggers:
 - based on both calorimeter-based and track-based inputs. Tracks cached from b-tagging algorithms used in b-jet triggers, so no additional CPU cost
 - reduces differences wrt offline jet reconstruction, i.e. higher efficiency and lower rate at same trigger pt threshold

Triggering at High Pileup



- Extensive work to reduce memory/timing usage, with particular focus on algorithms like tracking which requires resources that scale non-linearly with pileup
 - eg better caching information, preselections to reduce execution rates of tracking algorithms, further algorithm optimisation
- In August 2017, issue in LHC sector 16L2 forced to run with reduced number of bunches
 - compensations for luminosity loss lead to lumi above 2.0x10³⁴ at μ ~80
 - HLT farm could not cope with this pileup. ATLAS decided to level at 1.56x10³⁴, μ ~60
 - successful strategy: high data taking efficiency with little loss in integrated luminosity
- In 2018, LHC reached record peak lumi of 2.0x10³⁴ with µ~55. No need to level thanks to
 - developments in HLT triggers to reduce inefficiencies at high pileup
 - 20% more HLT processing slots

Trigger Efficiency in 2018



End-of-fill Triggers

- After few hours of collisions, L1 rate and HLT processing slots free up thanks to luminosity exponential decay
- High-rate and CPU-intensive triggers can be enabled within the data storage output limitation
- Strategy is used for the Trigger-level Analysis (<u>ATL-DAQ-PUB-2017-003</u>)
 - tiny event size with only information on HLT jets, collected by low-pt single jet trigger at an HLT rate up to 13 kHz when luminosity is below 1.0x10³⁴
 - total HLT output bandwidth is only marginally increased by these additional events
- End-of-fill strategy used for triggers for Bphysics signals (high processing power needed)

Summary

- ATLAS trigger system maintains excellent performance even at LHC running conditions far beyond design values
 - continuous and prompt developments of trigger software to improve pileup robustness and optimise resource usage
 - fully exploitation of new L1 hardware
- In 2017, levelling successfully ensured a highly efficient data taking when pileup reached levels beyond the capabilities of the HLT farm
- Running at high pileup is precious testbed for further optimising the trigger systems for Run-3 and HL-LHC run

References:

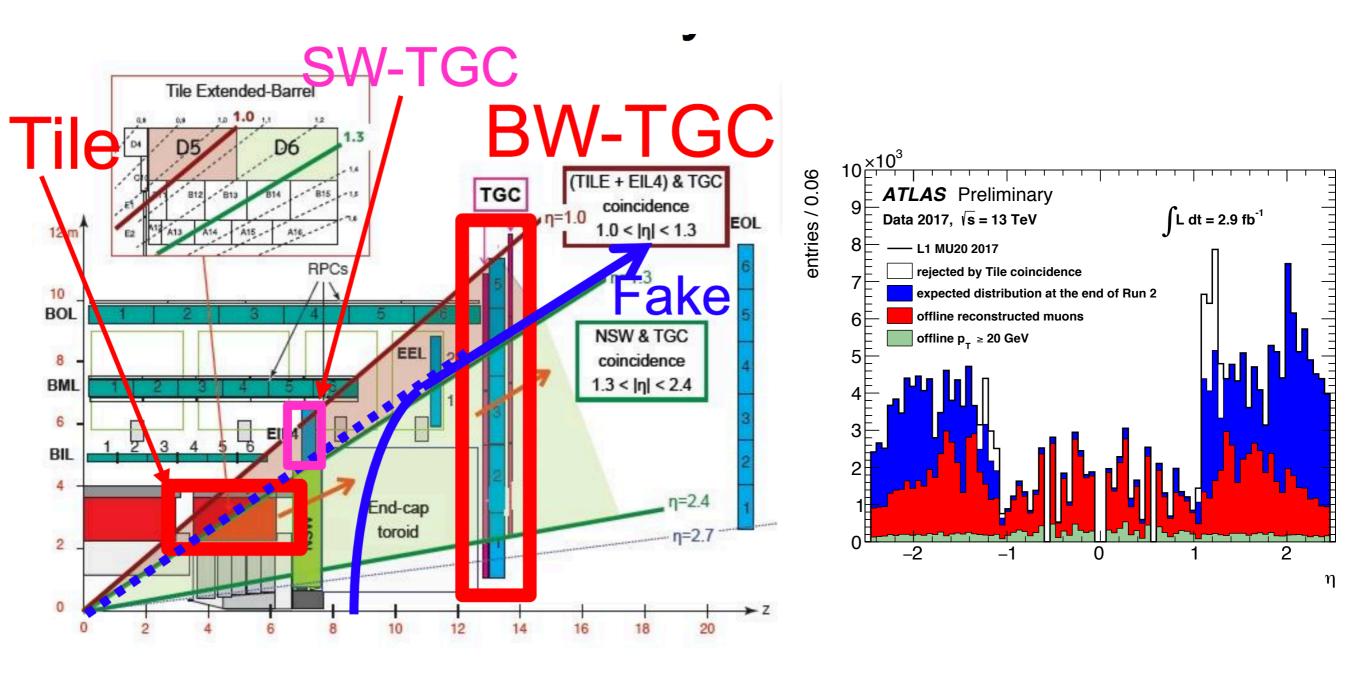
- Trigger Public Results
- Performance of the ATLAS Trigger system in 2015, EPJC (2017) 77:317, <u>1611.09661</u>
- Trigger Menu in 2017 (<u>ATL-DAQ-</u> <u>PUB-2018-002</u>)

Related talks/posters at ICHEP2018:

- the ATLAS Muon trigger (<u>A. Held</u>)
- the ATLAS FastTracker: Pioneering the next era of hardware track triggers (<u>T. R. Holmes</u>)
- the ATLAS Electron and Photon Trigger (P. Podberezko, poster)
- triggering on hadronic signatures in ATLAS developments for 2017 and 2018 (S. Schramm, poster)

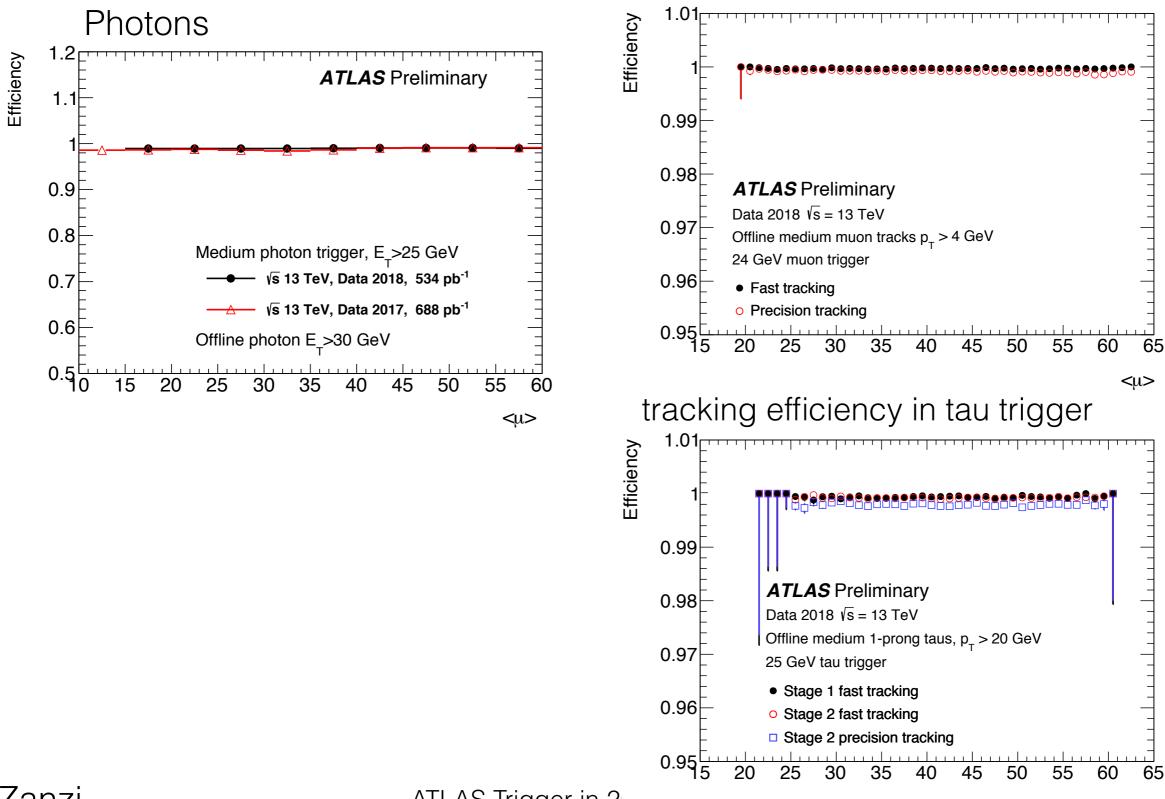
Additional Material

Trigger Menu


Trigger	Typical offline selection	Trigger Selection		Level-1 Peak	HLT Peak
		Level-1 (GeV)	HLT (GeV)	$\frac{\text{Rate (kHz)}}{L = 1.7 \times 10^{-3}}$	Rate (Hz) 34 cm ⁻² s ⁻¹
	Single isolated μ , $p_{\rm T} > 27 {\rm GeV}$	20	26 (i)	15	180
Single leptons	Single isolated tight e , $p_T > 27$ GeV	20 22 (i)	26 (i)	28	180
	Single μ , $p_T > 52 \text{ GeV}$	22 (1)	50	15	61
Single reptons	Single $p_{\rm T} > 52 \text{ GeV}$ Single $e, p_{\rm T} > 61 \text{ GeV}$	20 22 (i)	60	28	18
	Single τ , $p_{\rm T} > 170$ GeV	100	160	1.2	47
Two leptons					
	Two μ , each $p_{\rm T} > 15$ GeV Two μ , $p_{\rm T} > 23$, 9 GeV	2 × 10 20	2 × 14 22, 8	1.8 15	26 42
	Two very loose e , each $p_{\rm T} > 18 {\rm GeV}$	20 2 × 15 (i)	22, 8 2 × 17	1.7	12
	One e & one μ , $p_T > 8$, 25 GeV	$2 \times 15 (l)$ 20 (μ)	7,24	1.7	5
	One <i>e</i> & one μ , $p_T > 8$, 25 GeV One <i>e</i> & one μ , $p_T > 18$, 15 GeV	15, 10	17, 14	2.0	4
	One <i>e</i> & one μ , $p_T > 18, 13 \text{ GeV}$ One <i>e</i> & one μ , $p_T > 27, 9 \text{ GeV}$	22 (e, i)	26, 8	2.0	3
	Two τ , $p_T > 40$, 30 GeV	22 (e, 1) 20 (i), 12 (i) (+jets, topo)	35, 25	5	61
	One τ & one isolated μ , $p_T > 30$, 15 GeV	12 (i), 12 (i) (+jets, topo)	25, 14 (i)	2.1	10
	One τ & one isolated μ , $p_T > 30$, 15 GeV One τ & one isolated e , $p_T > 30$, 18 GeV	12 (i), 10 (+jets) 12 (i), 15 (i) (+jets)	25, 14 (l) 25, 17 (i)	4	10
		-			
	Three loose $e, p_{\rm T} > 25, 13, 13 \text{ GeV}$	20, 2 × 10	24, 2 × 12	1.3	< 0.1
Thurse 1	Three μ , each $p_{\rm T} > 7 \text{ GeV}$	3×6	3×6	0.2	6
Three leptons	Three μ , $p_T > 21$, 2×5 GeV	20	$20, 2 \times 4$	15	8
	Two μ & one loose $e, p_T > 2 \times 11, 13 \text{ GeV}$	$2 \times 10 (\mu)$	$2 \times 10, 12$	1.8	0.3
	Two loose e & one μ , $p_T > 2 \times 13$, 11 GeV	2 × 8, 10	2 × 12, 10	1.7	0.1
One photon	One loose γ , $p_{\rm T} > 145 {\rm GeV}$	22 (i)	140	28	43
Two photons	Two loose γ , $p_{\rm T}$ > 55, 55 GeV	2×20	50, 50	2.6	6
	Two medium γ , $p_{\rm T} > 40$, 30 GeV	2×20	35, 25	2.6	17
	Two tight γ , $p_{\rm T} > 25$, 25 GeV	2 × 15 (i)	2 × 20 (i)	1.7	14
	Jet ($R = 0.4$), $p_{\rm T} > 435 {\rm GeV}$	100	420	3.3	33
Single jet	Jet $(R = 1.0), p_{\rm T} > 480 {\rm GeV}$	100	460	3.3	24
	Jet ($R = 1.0$), $p_{\rm T} > 450$ GeV, $m_{\rm jet} > 50$ GeV	100	420, $m_{\rm jet} > 40$	3.3	29
$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	50	110	5	110
Multi-jets	Four jets, each $p_{\rm T} > 125 {\rm GeV}$	3 × 50	4 × 115	0.5	16
	Five jets, each $p_{\rm T} > 95 {\rm GeV}$	4 × 15	5 × 85	5	10
	Six jets, each $p_{\rm T} > 80 {\rm GeV}$	4 × 15	6 × 70	5	4
	Six jets, each $p_{\rm T} > 60$ GeV, $ \eta < 2.0$	4 × 15	$6 \times 55, \eta < 2.4$	5	15
<i>b</i> -jets	One <i>b</i> (ϵ = 40%), <i>p</i> _T > 235 GeV	100	225	3.3	15
	Two b ($\epsilon = 60\%$), $p_{\rm T} > 185, 70 {\rm GeV}$	100	175, 60	3.3	12
	One b ($\epsilon = 40\%$) & three jets, each $p_{\rm T} > 85$ GeV	4 × 15	4 × 75	5	15
	Two <i>b</i> (ϵ = 70%) & one jet, <i>p</i> _T > 65, 65, 160 GeV	2 × 30, 85	2 × 55, 150	1.2	15
	Two b ($\epsilon = 60\%$) & two jets, each $p_{\rm T} > 65$ GeV	$4 \times 15, \eta < 2.5$	4 × 55	3.2	13
B-Physics	Two μ , $p_{\rm T} > 11, 6 {\rm GeV}$	11,6	11, 6 (di- μ)	2.5	47
	Two μ , $p_{\rm T} > 6$, 6 GeV, 2.5 < m(μ , μ) < 4.0 GeV	$2 \times 6 (J/\psi, \text{topo})$	$2 \times 6 (J/\psi)$	1.6	48
	Two μ , $p_{\rm T} > 6$, 6 GeV, 4.7 < m(μ , μ) < 5.9 GeV	$2 \times 6 (B, \text{topo})$	$2 \times 6 (B)$	1.6	5
	Two μ , $p_{\rm T} > 6$, 6 GeV, 7 < m(μ , μ) < 12 GeV	2 × 6 (Y, topo)	2 × 6 (Y)	1.4	10
	$1 \text{ in } \mu, p_1 > 0, 0 \text{ Oct}, 7 < \text{ in } (\mu, \mu) < 12 \text{ Oct}$	2.00(1,000)	270(1)	1	

D. Zanzi

ATLAS Trigger 2020 17/08 U (2ATEP 2020 8-PUB-2018-002)


L1 Muon: Tile-Muon Coincidence

Trigger Performance

ATLAS Trigger in 2

15