PID strategy and performance at LHCb in Run 2

Carla Marin Benito on behalf of the LHCb collaboration

- Particle Identification at LHCb
- Computing strategy
- Calibration samples
- Performance

э.

• • • • • • • • • • • •

Particle Identification (PID) at LHCb

LHCb ГНСр

- LHCb is a heavy flavour physics experiment
- PID is crucial to study exclusive final states
- Recent example in JHEP02(2018)098:

The LHCb detector [JINST3 (2008) S08005]

Carla Marin (carla.marin@cern.ch)

PID at LHCb in Run 2

ICHEP 2018 3 / 15

A D N A B N A B N A B N

RICH detectors

- Two Ring Image Cherenkov Detecors (RICH)
 - \blacktriangleright RICH 1 based on ${\rm C}_{4}{\rm F}_{10}$ separates particles with p in [2, 60] ${\rm GeV}/c$
 - ▶ RICH 2 based on CF_4 separates particles with *p* in [15, 100] GeV/c
- Combine light rings and momentum to build log(Likelihood) distributions
- Crucial for π , K, p separation

Muon chambers

- Five tracking stations alternated with hadron absorbers at the end of the detector (M1 before calorimeters)
 - based on MWPC technology
 - 3-GEM in inner region of M1
- Track extrapolation and matching to hits in muon chambers
- $\bullet\,$ Crucial for μ identification, also at trigger level

Calorimeters

• Scintillating Pad Detector (SPD), Preshower (PS), Electromagnetic (ECAL) and Hadronic (HCAL) calorimeters

- Combine information into Multi-variate tools
- $\bullet\,$ Provide energy and position for neutral objects and triggers for e/γ
- Crucial for e, γ and π^0 separation

Carla Marin (carla.marin@cern.ch)

PID at LHCb in Run 2

ICHEP 2018 6 / 15

(4) (E) (E)

PID strategy [LHCb-DP-2018-001]

- Two types of variables from combination of charged PID information
 - $DLL_{X\pi}$: log likelihood difference between X and π hypothesis
 - ProbNNX: output of neural networks (NN) trained to identify X including also tracking information
- Dedicated tools for neutral objects based on NN: isNotE, isNotH
- Exploitaiton of state-of-the-art classifiers under development
- Calibration from data-driven techniques since PID not perfectly reproduced in simulation

See A. Poluektov's talk for details on latest techniques

A B A A B A

Computing strategy: TurboCalib

- LHCD THCD
- In Run 2, offline quality reconstruction is achieved in the Trigger
 Details in M. Whitehead's talk

- Calibration samples in the Turbo Calibration (TurboCalib) stream
 - \blacktriangleright Large statistic samples \rightarrow required precision for analysis
 - Computation of both offline and online PID variables
 - ► Raw event information available → exploit offline re-calibrations and new tunnings

Carla Marin (carla.marin@cern.ch)

Computing strategy: Working Group productions

- TurboCalib samples processed centrally and provided to analysts as ROOT files:
 - Large resource optimisation wrt do-it-yourself approach
 - Gain control on systematic uncertainties
- Several steps to provide information needed by analyses:
 - Matching of online and offline candidates
 - Invariant mass fits
 - Background subtraction using sWeights

< ロ > < 同 > < 回 > < 回 >

• Raw event information also available for particular studies (e.g. Upgrade, new PID variables)

Calibration samples: charged species [LHCb-DP-2018-001]

Species	Soft	Hard
е	$B^+\! ightarrow k$	$\Delta^+[e^+e^-]_{J/\psi}$
μ	$B^+\! ightarrow K^+[\mu^+\mu^-]_{J\!/\psi}$	$J/\psi \rightarrow \mu^+\mu^-$
π	$K^0_{ m S} ightarrow \pi^+\pi^-$	$D^{*+} ightarrow [K^- \pi^+]_{D^0} \pi^+$
Κ	$D_s^+ ightarrow [K^+ K^-]_\phi \pi^+$	$D^{*+} ightarrow [K^- \pi^+]_{D^0} \pi^+$
р	$\Lambda \rightarrow \mathrm{p}\pi^-$	$\Lambda \rightarrow \mathrm{p}\pi^-$, $\Lambda_c^+ \rightarrow \mathrm{p}K^-\pi^+$

ICHEP 2018 10 / 15

Image: A match a ma

Calibration samples: charged species [LHCb-DP-2018-001]

Carla Marin (carla.marin@cern.ch)

PID at LHCb in Run 2

ICHEP 2018 10 / 15

Calibration samples: charged species

- Long-lived particles (Λ, K⁰_S) decay mostly outside the VELO
- Downstream tracks might not have information from RICH 1
- Dedicated calibration samples included in TurboCalib since 2017 data-taking

< ⊒ >

Calibration samples: neutral objects

 Calibration samples for neutral objects also included in TurboCalib stream since 2017 data-taking

 $\begin{array}{lll} \mbox{Species} & \mbox{Soft} & \mbox{Hard} \\ \gamma & D^+ \! \rightarrow [\rho^0 \gamma]_{\eta'} \pi^+, \ D^{*+}_s \! \rightarrow D^+_s \gamma, & \mbox{$B^0 \! \rightarrow \! K^{*0} \gamma$} \\ & & \mbox{$\eta \! \rightarrow \! \mu^+ \mu^- \gamma$} \\ \pi^0 & D^0 \! \rightarrow \! K^+ \pi^- \pi^0 \mbox{ (resolved)} & \mbox{$D^0 \! \rightarrow \! K^+ \pi^- \pi^0$ (merged)} \end{array}$

ICHEP 2018 12 / 15

(3)

Performance: charged species

• Excellent separation in wide momentum range

Carla Marin (carla.marin@cern.ch)

PID at LHCb in Run 2

ICHEP 2018 13 / 15

э

< □ > < □ > < □ > < □ > < □ >

Performance: downstream tracks and neutral objects

• Good results also for downstream tracks and neutral objects

(4) (日本)

Summary

- Excellent PID performance is key for outstanding flavour physics results at LHCb
- PID from combined information of dedicated sub-detectors:
 - RICH 1 and RICH 2
 - Muon chambers
 - Calorimeters
- New computing strategy developed for Run 2 exploiting the Turbo model for calibration (TurboCalib)
- Calibration samples covering full analysis phase-space provided
 - Samples for downstream tracks and neutral objects recently included
- Excellent performance achieved in Run 2, laying the foundations for the LHCb upgrade

- 4 回 ト 4 ヨ ト 4 ヨ ト

Summary

- Excellent PID performance is key for outstanding flavour physics results at LHCb
- PID from combined information of dedicated sub-detectors:
 - RICH 1 and RICH 2
 - Muon chambers
 - Calorimeters
- New computing strategy developed for Run 2 exploiting the Turbo model for calibration (TurboCalib)
- Calibration samples covering full analysis phase-space provided
 - Samples for downstream tracks and neutral objects recently included
- Excellent performance achieved in Run 2, laying the foundations for the LHCb upgrade

BACK-UP

Carla Marin (carla.marin@cern.ch)

PID at LHCb in Run 2

ICHEP 2018 16 / 15

3

<ロト < 四ト < 三ト < 三ト

• Excellent separation in wide momentum range

ICHEP 2018 17 / 15