

Jets, E_Tmiss, and boosted jet identification in high-pileup conditions with ATLAS

Jeff Dandoy
University of Pennsylvania
on behalf of the ATLAS Collaboration

34th International Conference on High Energy Physics

Seoul, South Korea 7 July 2018

The Problem with Pileup

Pileup from additional collisions is a big problem, and will be even worse at the High Luminosity LHC

- Particles from pileup collisions can:
 - Add additional jets not from the hard-scatter
 - Overlap with hard scatter jets, altering their energy & structure

Every year the # of interactions per event (μ) increases, and will reach ~200 at the HL-LHC!

200

The Effect of Pileup

Jet Vertex Tagger

- Multivariate JVT connects jets to pileup vertices using tracking information
- Large reduction in pileup jets within tracker ($|\eta| < 2.4$)
- HL-LHC: improve & extend tracker to InI = 4.0

 Proposed High Granularity Timing Detector (HGTD) aims for 30 ps timing resolution to match jets to pileup vertices

See HGTD talk by

Ariel Schwartzman

Beyond tracker use **Forward JVT**:

Remove forward QCD jets that balance a pileup vertex

Remove stochastic jets (from many vertices) using spatial

and timing correlations of clusters

Area-based subtraction

- Hard-scatter jets can include overlapping pileup energy & pileup clusters
- Event-wide ambient p_T density (p) taken from median p_T of (pileup sensitive) k_t jets
- Subtract p from each anti-k_t jet according to its area

- Residual correction vs NPV and μ due to changing calorimeter geometry
- Works well currently, but difficult at HL-LHC

Cluster-level Subtraction

Translate area-based subtraction to clusters. How to define cluster area?

- Constituent Subtraction: Add fake "ghost particles" uniformly to event, and cluster alongside cells
 - Number of clustered ghosts ~ area
- Correct topoclusters according to N_{ghost} & event ρ
 (i.e. give ghosts negative p_T)

Clusters & Voronoi Area

- Voronoi Area: η - ϕ area closest to each cluster
- Subtract ρ from each cluster according to Voronoi area
- 1σ suppression: remove all clusters with low significance above noise

SoftKiller

- SoftKiller targets individual pileup clusters surviving Constituent or Voronoi subtraction
- Reject all clusters below an event-specific p_T cut

p_T cut chosen
 so detector is half
 empty for the event

Cluster-level Performance

- Large reduction in jet energy resolution compared to jet-area subtraction in high pileup conditions
- Gains even at lower μ → ongoing studies for use Run 2 & 3 data

Background rejection of W tagger at 50% signal efficiency for various jet types

- Correcting clusters also improves jet substructure
 - Essential for tagging boosted top, W, Z, & Higgs
- Scan over clusters types
 & grooming methods
 for best combination
 - Tagging efficiency, fake rejection, and mass stability w.r.t. pileup

Good performance from
 trimmed LCtopo & soft drop CS+SK / VS+SK jets

Modifications to LCW clusters

JETM-2018-003

• Final algorithms will be calibrated with full in situ chain used for small-R jets

Jet Tagging Performance

 $\langle \mu \rangle$ ~20

W mass stability vs N_{PV} for various jet types

- Correcting clusters also improves jet substructure
 - Essential for tagging boosted top, W, Z, & Higgs
- Scan over clusters types
 & grooming methods
 for best combination
 - Tagging efficiency, fake rejection, and mass stability w.r.t. pileup

trimmed LCtopo & soft drop CS+SK / VS+SK jets

Modifications to LCW clusters

JETM-2018-003

• Final algorithms will be calibrated with full in situ chain used for small-R jets

Particle flow jets

Eur. Phys. J. C 77 (2017) 466

Match tracks to topoclusters, removing charged energy while keeping neutral component

Topoclusters consistent with pileup tracks are rejected, reducing pileup

Improved energy resolution

at low p_T, driven by accurate track measurements

Track-Calo Clusters (TCC)

- At high-p_T, track p_T resolution degrades, but extrapolated angular resolution improves
- TCC uses tracks to correct spatial resolution of coarser calorimeter clusters, not their energy
 - Retains benefits of pileup vertex rejection
 - Large improvement to substructure variables (like D₂), benefiting taggers
 - Robust against pileup

Conclusion

- High pileup environment now & at the HL-LHC offers challenges for jet calibration & tagging
- Various new techniques for mitigating pileup impact on jet measurements, E_Tmiss, and identification of high-p_T jets (boson & top tagging)
 - Great deal of experimentation significant effort by software team to ease implementation
 - Plan to converge in Run 3 on optimal combination of techniques
- Significant HL-LHC upgrades will improve track-based pileup tagging

Backup

Jet Reconstruction

- Inputs to jets are clusters (collections of neighboring calorimeter cells)
- Inherent noise suppression from 4-2-0 clustering algorithm:
 - Low energy pileup rejected
- Anti-k_T jet-finding algorithm focuses on hardest energy deposits, w/ reduced shaping by pileup
- However:
 - Higher-pt pileup jets still get through
 - Selected clusters are still affected by pileup

Most **low-significance cells** removed by clustering

High granularity timing detector

- HL-LHC will see <mu>=200,
 with ~1.8 vertex per mm
 - Impossible to distinguish pileup vs hard-scatter tracks via geometry only
 - Within a bunch crossing, collisions occur with σ_t = 180 ps
- HGTD can resolve track time within 30 ps
- Large reduction in tracks from pileup vertices close to hard scatter

Jet Vertex Tagger (JVT)

Eur. Phys. J. C (2016) 76:581

$$R_{pT} = \frac{\sum_{k} p_{T}^{trk_{k}}(PV_{0})}{p_{T}^{jet}}$$

- Multivariate using R_{pT} and corrJVF
- R_{pT} is ratio of jet's p_T matched to hard scatter tracks
- corrJVF compare fraction of hard scatter tracks against pileup tracks
 - Corrected by # pileup tracks to remove N_{PV} dependence

$$corrJVF = \frac{\sum_{k} p_{T}^{trk_{k}}(PV_{0})}{\sum_{l} p_{T}^{trk_{l}}(PV_{0}) + \frac{\sum_{n \geq 1} \sum_{l} p_{T}^{trk_{l}}(PV_{n})}{(k \cdot n_{trk}^{PU})}}$$

$$JVF[jet2, PV1] = 0$$

$$JVF[jet1, PV2] = 1$$

$$JVF[jet1, PV2] = 1$$

$$JVF[jet1, PV2] = f$$

$$Z$$

10⁻³

 10^{-4}

-0.5

0.5

corrJVF

0

Jet Grooming: Trimming

- ATLAS standard grooming procedure
- Target softer radiation from pileup, MPI, & ISR
- Recluster constituents into small-R sub-jets R_{sub} ~ 0.2
- Remove sub-jets with fractional p_T < f_{cut} ~ 3%

Jet Grooming: Pruning

- Remove soft low-p_T clusters, but keep large-angle radiation
- Redo jet clustering (C/A or k_t), and at each stage cluster if either:
 - Not soft: p_T fraction of second constituent is > z_{cut}
 - Close-by: $\Delta R_{1,2} < R_{cut}$
- Otherwise, reject 2nd constituent

JHEP 09 (2013) 029

Jet Grooming: Modified Mass Drop + Filtering

- Iterative declustering of a C-A jet targeting soft and wide-angle radiation
 - Remove branches with p_T imbalance, provided no large drop in mass
- Requirements on 2 subjets from last clustering stage:

(i - Mass Drop) :
$$m(j_1) < \mu \times m(j_2)$$

(ii - Balanced Splitting) : $\frac{min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} > z_{\text{cut}}$

- If either fails, remove softest jet j2, and continue procedure
- If both pass, end procedure and keep jet
- **Filtering**: Recluster constituents into 3 C-A jets of radius **R**_{filt} (discard extra clusters)

Jet Grooming: Soft drop

- Extends mMDT to reject wide-angled radiation
- Run backwards through clustering of C/A jet, removing constituent if:

$$\frac{min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} < z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$$

- Larger β allows for more soft & wide-angled radiation in a jet
- Recursive soft drop: Continue the procedure the soft-drop requirements are passed N times
 - Continues through good constituents, grooming them as well
- Bottom-up soft drop: Apply soft drop criteria during jet reconstruction

Jet Reclustering

- Build large-R jets from fully-calibrated R=0.4 jets
 - Benefit from small-R pileup suppression
 - Propagate full suite of small-R uncertainties
 - No additional large-R calibration needed flexible choice in large-R radius
- Can use other grooming methods with R=0.4 jets

arXiv:1407.2922

Jet Tagging Performance

- Scan over many clusters types & grooming methods for best combination
- Tagging efficiency, fake rejection, and mass stability w.r.t. pileup

Track-Calo Clusters Method

TCC reconstruction: use track spatial coordinates and cluster energy components

Unique track-cluster match:

$$TCC_{\widehat{1}} = (p_T^{c_1}, \eta^{t_1}, \phi^{t_1}, m^{c_1} = 0)$$

Unmatched cluster:

$$TCC_{(2)} = (p_T^{c_7}, \eta^{c_7}, \phi^{c_7}, m^{c_7} = 0)$$

Unmatched track:

$$TCC_{3} = (p_T^{t_6}, \eta^{t_6}, \phi^{t_6}, m^{t_6} = 0)$$

In case of track-cluster-multi-matches, create one TCC object per hard-scatter PV track, and share the energy based on p_{τ} ratios:

$$TCC_{(4)} = (\alpha p_T^{c_2}, \eta^{t_2}, \phi^{t_2}, \alpha m^{c_2} = 0)$$

$$TCC_{\mathfrak{S}} = (\beta p_{T}^{c_2}, \eta^{t_3}, \phi^{t_3}, \beta m^{c_2} = 0)$$

$$\alpha = \frac{p_{\mathrm{T}}^{t_2}}{p_{\mathrm{T}} \left[\mathbf{p}^{t_2} + \mathbf{p}^{t_3} \right]} \qquad \beta = \frac{p_{\mathrm{T}}^{t_3}}{p_{\mathrm{T}} \left[\mathbf{p}^{t_2} + \mathbf{p}^{t_3} \right]}$$

