Measurements of the CMS jet energy scale and resolution at 13 TeV

Milos Dordevic
(Vinca Institute, University of Belgrade)
On behalf of the CMS Collaboration

04 July - 11 July 2018, Seoul, Korea
Motivation

- **Jets** are the **experimental signatures of quarks and gluons** produced in high-energy processes such as proton-proton collisions at the LHC.

- Jet production cross-sections are several orders of magnitude higher than other processes.

- Besides being the signal, jets can fake particles like γ,e,μ,τ.

- High event pileup presents a challenge to reconstruct and calibrate jets in p-p collisions.
Jet Reconstruction at CMS

- Jets at CMS experiment are clustered using the anti-k_T algorithm ($R = 0.4, 0.8$ etc.)

- Particle level jets: all stable and visible particles in gen. event

- Calorimeter jets: from energy deposits in calorimeter towers

- Particle Flow jets: reconstructed by clustering PF candidates

- Charged hadron subtraction algorithm for pileup removal

- PFCHS: main algorithm used at CMS
 - results in this talk based entirely on PF+CHS

- Pile Up Per Particle Id (PUPPI) algorithm: weights to particles based on probability to come from PU
Jet Particle Flow composition

- Jet PF composition from dijet events (jets w/ JEC)
- Data compared to the multijet Pythia 8 QCD
- Photons, leptons, charged & neutral hadrons (pileup refers to energy fraction that was removed by CHS)

- Improved tracking efficiency towards the end of the data taking in 2016:
 - better agreement between the data and MC for the PF composition
Jet Calibration at CMS

- **Jet Energy Corrections (JEC)** procedure using **factorized approach** in order to correct the reconstructed jets (on average) back to the particle jet level

 - Pileup correction in order to account for the offset energy
 - Correction to particle level jet vs p_T and η (from simulation)
 - Small residual corrections to data for pileup, relative vs η, absolute vs p_T; **full physics analysis** to derive the residuals
 - **Jet Energy Resolutions (JER)** measured in MC events vs p_T^{ptcl}, η and μ and data to MC scale factors derived from dijet events are applied in addition

\[
\frac{<p_T^{RECO}>}{<p_T^{ptcl}>} (p_T, \eta, \mu) = 1
\]
Jet Energy Offset correction

- Charged hadrons associated to the pileup vertices removed using the CHS algorithm
- Residual pileup offset contribution can be estimated using Random Cone method for ZeroBias data & Single Neutrino MC sample

Data to MC scale factor vs η during the different periods of the CMS data taking

- Time dependence of the scale factors in EB after fix of track dynamic inefficiency
Jet Energy Scale in simulation

- Jet response, $<p_T^{RECO}>/ <p_T^{ptcl}>$, particle jets from stable & visible particles

- Stable response in the barrel region:
 - neutral hadron response of 0.6 (15% of p_T^{ptcl}) => 0.95 response
 - response drops for $p_T < 30$ GeV due to limited HCAL acceptance

- Stronger p_T dependence in EC & HF

- Response drop: $3.0 < |\eta| < 3.2$ due to transition & $|\eta| > 4.5$ for acceptance

- Correction performed for p_T and η dependence, determined in bins of η
Jet Energy Scale: relative η residual corrections

- Relative residual correction derived as a function of p_T and η, relative to the well calibrated detector region with $|\eta| < 1.3$
- The missing transverse energy projection fraction (MPF) method with di-jet events

Data compared to Pythia8 QCD simulation

- Relative res. correction as a function of jet p_T
- Correction value at average p_T in each η bin shown for various data taking periods
Jet Energy Scale: absolute scale corrections

- Response dependence on p_T^Z in $Z(\mu\mu)$+jets events, before absolute residual correction
- Response is calculated with events where the additional jet activity $\alpha = p_T^2/p_T^{\text{ref}} < 0.3$

CMS DP-2018/028

γ + jets Run2016 36.5 fb$^{-1}$ (13 TeV)

- Madgraph_aMC@NLO (Z+jets), PYTHIA8 (γ+jets)
- p_T balance response < 1 due to FSR + ISR effects
Jet Energy Scale: multijet balance method

- Extrapolation of JEC to high p_T constrained using multijet balance method:
 - evt. with high p_T barrel jet balanced by recoil system of 2 or more jets
- The p_T balance and MPF response are defined using the following expressions:
 \[
 MJB = \frac{|\vec{p}_T^{\text{Leading jet}}|}{|\vec{p}_T^{\text{Recoil}}|}
 \]
 \[
 R_{\text{MPF}} = 1 + \frac{E_t \cdot \vec{p}_T^{\text{Recoil}}}{(\vec{p}_T^{\text{Recoil}})^2}
 \]
- Multijet analysis can only constrain the jet energy scale p_T dependence
Jet Energy Scale: absolute residual corrections

- The data to MC comparison for the dependence of jet response on jet p_T
- Combination of four samples: $\gamma +$ jets, $Z(\mu\mu) +$ jets, $Z(ee) +$ jets & multijet

- Scale uncertainties of the reference objects taken as nuisance parameters
- Reduced correction@end of data taking (fixed strip tracker dynamic ineff.)
Jet Energy Resolution

- Resolution stable against pileup above jet $p_T > 100$ GeV

$$JER = \sigma \left(\frac{<p_T>}{<p_T^{ptcl}>} \right)$$

- Resolution better than 10% (5%) above p_T of 100 GeV (1 TeV), degradation of 50 % at p_T of 20 GeV for very high pileup scenario (up to the value $\mu=75$)
Jet Energy Scale Uncertainties

- Flat absolute scale uncertainties -> combined γ, $Z(\text{ee})$ and $Z(\mu\mu)$ reference scale and FSR + ISR
- Relative scale -> di-jet uncertainties for JER (SF variation); FSR+ISR from Pythia8 vs Herwig diff.
- Pileup->5% uncertainty of data/MC scale factor for offset correction & offset jet p_T dependence

CMS DP-2018/028

- Time stability: different corrections per epoch
- Method & sample: MPF vs p_T balance; Z/γ+jets vs dijet difference outside (inside) the tracking
Conclusions

• Precise reconstruction and calibration of hadronic jets is crucial for the large majority of the physics analysis of the CMS collaboration.

• Various data and MC samples used to derive corrections, applying factorized approach to cover wide range of p_T with full η coverage.

• Zero Bias (data) events, then QCD dijet, $Z(\text{ee, } \mu\mu) + \text{jets}$, $\gamma + \text{jets}$ and multi-jet (MC) events used for the in-situ calibration of jets.

• High precision of the jet energy calibrations (1% in central region).

• The CHS algorithm strongly reduces the impact of pileup on the jet energy resolution; PUPPI expected to improve on this even further.
BACKUP
The CMS detector at CERN

CMS DETECTOR
- Total weight: 14,000 tonnes
- Overall diameter: 15.0 m
- Overall length: 28.7 m
- Magnetic field: 3.8 T

STEEL RETURN YOKE
- 12,500 tonnes

SILICON TRACKERS
- Pixel (100x150 μm) ~16m² ~66M channels
- Microstrips (80x180 μm) ~200m² ~9.6M channels

SUPERCONDUCTING SOLENOID
- Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
- Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
- Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

PRESHOWER
- Silicon strips ~16m² ~137,000 channels

FORWARD CALORIMETER
- Steel + Quartz fibres ~2,000 Channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
- ~76,000 scintillating PbWO₄ crystals

HADRON CALORIMETER (HCAL)
- Brass + Plastic scintillator ~7,000 channels
Particles in the CMS detector

Key:
- Muon
- Electron
- Charged Hadron (e.g., Pion)
- Neutral Hadron (e.g., Neutron)
- Photon

Transverse slice through CMS

Silicon Tracker

Electromagnetic Calorimeter

Hadron Calorimeter

Superconducting Solenoid

Iron return yoke interspersed with Muon chambers

M. Dordevic (Vinca Institute) 05 July 2018, ICHEP2018
The CMS Particle Flow Algorithm

- Global event reconstruction: correlation of the basic elements (tracks & clusters) from all detectors for particle reco & ID
- Higher efficiency and purity, better energy resolution
- Iterative tracking algo
- Higher eff. & same FR
- Modified (faster) PF algorithm in the HLT system
- Increased HLT efficiency for the jets and τ leptons
Charged Hadron Subtraction at CMS

- **Pileup** leads to additional charged hadrons, thus affecting the jet reconstruction, missing transverse energy, the τ isolation and ID

- Charged hadron subtraction (CHS) algorithm used for identification and also removal of PF candidates corresponding to pileup vertices

- Improved the JER w/ CHS algorithm

- The CHS removes about 85% PU jets
Improvement of JER with PUPPI at high PU

- Mass response and mass resolution for W+jets as function of # prim. vertices

- PUPPI shows the best mass resolution along with an improved stability against the pileup
Strip Tracker Dynamic Inefficiency

- Decrease of signal over noise ratio associated to loss of tracking hits observed in late 2015 and part of 2016
 - Increasing with the Instantaneous Luminosity and occupancy
 - Initially believed to be due to heavily ionizing particles (HIPs)
 - Finally traced to saturation effects in the APV chip preamplifier
- Fixed in mid August changing the APV chip settings to increase drain speed
 - About 20/fb of data affected -> problem mitigated in data reprocessing