Level-1 Calorímeter Trigger from virtex-7 to ultrascale+

Marcel Weirich for the ATLAS Collaboration

weirich@uni-mainz.de

Outline

Introduction to the Current System

- Trigger System for the ATLAS Experiment @ LHC
- Level-1 Topological Processor (L1Topo)

 \rightarrow Hardware, Firmware & Performance

Future Upgrades of the Level-1 Calorimeter Trigger

- Quick Overview
- Jet Feature EXtractor (jFEX) & **New** L1Topo

 \rightarrow Hardware, Firmware, FPGA Resource Usage & Test Results

Introduction

Run-1 (2009 to 2013)

Technical Details of the L1Topo System @ Run-2:

- 2 ATCA boards
- 2 processor FPGAs (Xilinx <u>Virtex-7</u>) plus 1 FPGA (Xilinix Kintex-7) for control and readout to DAQ per module

Input:

 Trigger Objects (TOBs), e.g. Jets, myons, electrons, photons, taus

FPGA Processing:

 Angular distances, missing energy, transverse and invariant mass calculations etc.

Output:

• Trigger data is sent to the L1CTP

 \downarrow L1Topo module \downarrow

→ Most energetic **delayed** muon is used in topological cuts with jets / MET from **earlier** bunchtick

Marcel Weirich

L1Topo Trigger Performance in Run-2: -> already presented by D. Zanzi

Significant reduction of background rates while keeping a good signal efficiency without raising $E_{\rm T}$ thresholds

- Rate reduction and trigger efficiency are shown below for B-physics dimuon triggers
 - \rightarrow overall reduction of the rate by a factor of 4 (left plot)
 - → only small efficiency losses of about 12% (right plot)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerOperationPublicResults

Future Upgrades of the Level-1 Calorimeter Trigger Quick Overview

Next Upgrade (2019 to 2020)

- New readout of the calorimeters
- Increased granularity becomes available for the hardware triggers
 - ightarrow the entire trigger must be **rebuilt**

Run-3 (2021 to 2023)

Future Upgrades of the Level-1 Calorimeter Trigger Jet Feature EXtractor (jFEX) & New L1Topo

Technical Details of the jFEX System:

- 6 ATCA boards
- 4 processor FPGAs (Xilinx <u>UltraScale+</u>) plus extension mezzanine equipped with one FPGA (Xilinx Artix 7) for control
- 120 multi-gigabit transceivers (MGTs) per FPGA (up to 12.8 Gbps link speed)

New L1Topo based on jFEX:

- 3 ATCA boards (only 2 for Run-2)
- 2 processor FPGAs (Xilinx UltraScale+) per module
- 118 input (24 output) fibres per processor FPGA (up to 12.8 Gbps link speed)
- ightarrow First prototype expected soon

\downarrow jFEX final prototype \downarrow

 \downarrow New L1Topo (3D computer generated) \downarrow

Jet Feature EXtractor (jFEX) Firmware Algorithms – Block Diagram

jFEX & New L1Topo FPGA Resource Utilization

new (larger) FPGAs allow implementations of much more complex algorithms

July 5, 2018

jFEX Final Prototype Hardware Test Results

Power Consumption:

- All multi-gigabit transceivers enabled
- 11.2 Gbps link speed
 - Link speed tests successfully done up to 12.8 Gbps

Supply	Voltage Rail	Current (A)	Temp. (°C)
Board Level Voltages	1V8	0.47	32.00
	2V5	14.55	-
	3V3	7.42	30.00
U1	V _{CCINT (0.85V)}	23.75	44.00
	MGTYAV _{CC (0.9V)}	10.95	46.00
	MGTYAV _{TT (1.2V)}	20.42	52.00
U2	V _{CCINT (0.85V)}	20.41	36.00
	MGTYAV _{CC (0.9V)}	10.75	39.00
	MGTYAV _{TT (1.2V)}	20.43	45.00
U3	V _{CCINT (0.85V)}	17.17	38.00
	MGTYAV _{CC (0.9V)}	10.45	43.00
	MGTYAV _{TT (1.2V)}	20.14	48.00
U4	V _{CCINT (0.85V)}	18.82	38.00
	MGTYAV _{CC (0.9V)}	10.73	39.00
	MGTYAV _{TT (1.2V)}	20.21	45.54
Total (W)			→ 265.86

Thermal Measurement:

• All multi-gigabit transceivers enabled

ע no critical temperatures observed

ightarrow well within limits of ATCA standard (400 W)

Summary & Outlook

Summary:

- **jFEX / upgraded L1Topo** are boards based on Xilinx **UltraScale+** FPGAs running at a link speed of **up to 12.8 Gbps**
 - \rightarrow has been shown to work reliably in prototype testing
- The larger FPGAs allow implementations of much more complex algorithms
 - \rightarrow improvements in performance have been shown in high-level simulations

Outlook:

- Final production in the second half of 2018
- Integration tests at the beginning of 2019
- Installation in autumn 2019

Thanks for your attention.