Level-1 Calorimeter Trigger
from Virtex-7 to UltraScale+

Marcel Weirich for the ATLAS Collaboration
weirich@uni-mainz.de

Mainz
Introduction to the Current System

• Trigger System for the ATLAS Experiment @ LHC
• Level-1 Topological Processor (L1Topo)
 → Hardware, Firmware & Performance

Future Upgrades of the Level-1 Calorimeter Trigger

• Quick Overview
• Jet Feature EXtractor (jFEX) & New L1Topo
 → Hardware, Firmware, FPGA Resource Usage & Test Results
Introduction
Introduction
Trigger System for the ATLAS Experiment @ LHC

Run-1 (2009 to 2013)

Level-1: FPGA based Hardware Trigger

↓ First Upgrade (2013 to 2015)

Run-2 (2015 to 2018)

With the Topological Processor (L1Topo) it became possible for the first time to transfer 4-vectors of all Trigger Objects (TOBs) for the full event to a single module and process them with FPGAs.
Technical Details of the L1Topo System @ Run-2:

• 2 ATCA boards
• 2 processor FPGAs (Xilinx Virtex-7) plus 1 FPGA (Xilinx Kintex-7) for control and readout to DAQ per module

Input:

• Trigger Objects (TOBs), e.g. Jets, myons, electrons, photons, taus

FPGA Processing:

• Angular distances, missing energy, transverse and invariant mass calculations etc.

Output:

• *Trigger data* is sent to the L1CTP
L1Topo Algorithms:

Input

- Trigger Objects (TOBs)

Sort & Select

- Reduction of input lists to ensure fast processing

Topological Algorithms

- Calculations of event topological variables

Output

- Results & Overflows

Exotic Example: Late-Muon (Sort) Algorithm

→ Meant for new heavy (long lived) particles decaying in muons

- event N
 - new heavy particle

- event $N+1$
 - delayed muon from event N

→ Most energetic delayed muon is used in topological cuts with jets / MET from earlier bunchtick
L1Topo Trigger Performance in Run-2: already presented by D. Zanzi

Significant reduction of background rates while keeping a good signal efficiency without raising E_T thresholds

- **Rate reduction and trigger efficiency** are shown below for B-physics dimuon triggers
 - overall reduction of the rate by a factor of 4 (left plot)
 - only small efficiency losses of about 12% (right plot)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerOperationPublicResults
upgrades
Future Upgrades of the Level-1 Calorimeter Trigger
Quick Overview

Next Upgrade (2019 to 2020)

- **New readout** of the calorimeters
- **Increased granularity** becomes available for the hardware triggers
 → the entire trigger must be **rebuilt**

Run-3 (2021 to 2023)

Level-1: FPGA based Hardware Trigger

- **Muon Trigger**
- **Calorimeter Trigger**
 - **Feature Extractors**
 - Electron Feature Extractor (eFEX) → e/γ, τ
 - Jet Feature Extractor (jFEX) → Jets, τ, ΣE_T, E_T^{miss}
 - Global Feature Extractor (gFEX) → Large-R Jets

CPUs

Marcel Weirich
July 5, 2018
Technical Details of the jFEX System:

- 6 ATCA boards
- 4 processor FPGAs (Xilinx UltraScale+) plus extension mezzanine equipped with one FPGA (Xilinx Artix 7) for control
- 120 multi-gigabit transceivers (MGTs) per FPGA (up to 12.8 Gbps link speed)

New L1Topo based on jFEX:

- 3 ATCA boards (only 2 for Run-2)
- 2 processor FPGAs (Xilinx UltraScale+) per module
- 118 input (24 output) fibres per processor FPGA (up to 12.8 Gbps link speed)

→ First prototype expected soon
Jet Feature EXtractor (jFEX)
Firmware Algorithms – Block Diagram

Menu / Databases

Parameters

LAr

Tile

Noise Suppression

Pile-up Subtraction

LAr + Tile

LAr + Tile

LAr, Tile

Small-Area Jets

Large-Area Jets

jFEX Taus

Global Variables

TOB Generation & Sorting

Output: Trigger Objects (TOBs):
- η and ϕ coordinates
- Transverse Energy
- ...

Input: Calorimeter Tower Energies:

Maximum processing time: 6 bunchticks ($= 150$ ns)

Marcel Weirich
July 5, 2018
jFEX & New L1Topo
FPGA Resource Utilization

- **jFEX Lookup table (LUT) resource usage:**
 - Central region
 - (different in the forward region)
 - Used: 18%
 - Available: 82%

- **L1Topo LUT resource usage:**
 - Run-2 system → Run-3 system (preliminary)
 - Current system (coarse granularity)
 - Used: 29%
 - Available: 71%
 - jFEX (fine granularity)
 - Used: 22%
 - Available: 78%

new (larger) FPGAs allow implementations of much more complex algorithms
Power Consumption:

- All multi-gigabit transceivers enabled
- 11.2 Gbps link speed
 - Link speed tests successfully done up to 12.8 Gbps

Thermal Measurement:

- All multi-gigabit transceivers enabled
 - no critical temperatures observed

Power Consumption Table

<table>
<thead>
<tr>
<th>Supply</th>
<th>Voltage Rail</th>
<th>Current (A)</th>
<th>Temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board Level Voltages</td>
<td>1V8</td>
<td>0.47</td>
<td>32.00</td>
</tr>
<tr>
<td></td>
<td>2V5</td>
<td>14.55</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3V3</td>
<td>7.42</td>
<td>30.00</td>
</tr>
<tr>
<td>U1</td>
<td>V_{CCINT} (0.85V)</td>
<td>23.75</td>
<td>44.00</td>
</tr>
<tr>
<td></td>
<td>MGTYAV_CC (0.9V)</td>
<td>10.95</td>
<td>46.00</td>
</tr>
<tr>
<td></td>
<td>MGTYAV_TT (1.2V)</td>
<td>20.42</td>
<td>52.00</td>
</tr>
<tr>
<td>U2</td>
<td>V_{CCINT} (0.85V)</td>
<td>20.41</td>
<td>36.00</td>
</tr>
<tr>
<td></td>
<td>MGTYAV_CC (0.9V)</td>
<td>10.75</td>
<td>39.00</td>
</tr>
<tr>
<td></td>
<td>MGTYAV_TT (1.2V)</td>
<td>20.43</td>
<td>45.00</td>
</tr>
<tr>
<td>U3</td>
<td>V_{CCINT} (0.85V)</td>
<td>17.17</td>
<td>38.00</td>
</tr>
<tr>
<td></td>
<td>MGTYAV_CC (0.9V)</td>
<td>10.45</td>
<td>43.00</td>
</tr>
<tr>
<td></td>
<td>MGTYAV_TT (1.2V)</td>
<td>20.14</td>
<td>48.00</td>
</tr>
<tr>
<td>U4</td>
<td>V_{CCINT} (0.85V)</td>
<td>18.82</td>
<td>38.00</td>
</tr>
<tr>
<td></td>
<td>MGTYAV_CC (0.9V)</td>
<td>10.73</td>
<td>39.00</td>
</tr>
<tr>
<td></td>
<td>MGTYAV_TT (1.2V)</td>
<td>20.21</td>
<td>45.54</td>
</tr>
</tbody>
</table>

Total (W)

- 265.86

→ well within limits of ATCA standard (400 W)
Summary:

• **jFEX / upgraded L1Topo** are boards based on Xilinx **UltraScale+** FPGAs running at a link speed of **up to 12.8 Gbps**
 → has been shown to work reliably in prototype testing

• The **larger FPGAs** allow implementations of **much more complex algorithms**
 → improvements in performance have been shown in high-level simulations

Outlook:

• **Final production** in the second half of 2018
• **Integration tests** at the beginning of 2019
• **Installation** in autumn 2019
Thanks for your attention.