Electron and Photon Energy Measurement Calibration with the ATLAS Detector

Stefanie Morgenstern (CERN, TU Dresden) on behalf of the ATLAS Collaboration

ICHEP 2018

July 5 2018

Overview of calibration procedure

• Electron/Photon passes SIMULATION through absorber of the Liquid-argon calorimeter → Electromagnetic shower training of MVA e/γ calibration • Shower particles ionise LAr Ionisation electrons drift to electrode due to HV EM cluster applied in LAr gap energy \rightarrow Current collected by read-out electrodes \rightarrow Signal amplified, shaped equalization of longitudinal layer and digitised response • Cells combined to clusters E_1/E_2 Eo DATA over 3(4) layers You want to know more about the ATLAS LAr Calorimeter? → Steffen Stärz's talk

stefanie.morgenstern@cern.ch

Or more about the identification of electrons and photons in ATLAS? → Nadezda Proklova's talk

Simulation based calibration

Energy measured in cluster of given size in each layer \rightarrow Energy loss out of cluster and in passive material needs to be recovered by multivariate approach

Corrections applied on data

Residual mis-calibration of layer response due to mis-calibration of cell electronics response or cross talk

stefanie.morgenstern@cern.ch

- Estimated from measured and simulated $Z \rightarrow ee$

$$\alpha_{PS} = \frac{E_0^{\text{data}}}{E_0^{\text{MC,corr}}}$$

$$\rightarrow \frac{E_0^{\text{MC,corr}}}{E_0^{\text{MC}}} = 1 + A \cdot \left(\frac{E_{1/2}^{\text{data}}}{E_{1/2}^{\text{MC}} \cdot b_{1/2}} - 1\right)$$

A : correlation between $E_{1/2}$ and E_0 under material variations in front of PS (estimated from MC)

 $b_{1/2}$: correction on $E_{1/2}$ for imperfect modelling of passive material between PS and L1 (estimated from unconverted γ)

\rightarrow uncertainty < 5%

Corrections applied on data

Uniformity correction

- Slightly larger gaps inbetween LAr calorimeter modules
- Further gravity induced widening of intermodulegaps
- Derived from $Z \rightarrow ee$
- Several HV sectors in the LAr calorimeter at nonnominal HV
- Partially corrected on reconstruction level
- Derived from $Z \rightarrow ee$

```
\rightarrow ~ 1% effect on resolution
```


Energy scale & resolution

Energy scale calibration derived from data/MC comparison with $Z \rightarrow ee \rightarrow$ residual mismatch

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

Systematic uncertainties

- Uncertainties originate from data/MC disagreements and energy dependence of calibration
- Separate treatment of electrons, converted and unconverted photons

Scale uncertainties

- Set of 64 independent uncertainty sources (e.g. for different n regions, energy ranges)
- \rightarrow Layer inter-calibration
- \rightarrow Non-linearity of cell energy measurement
- \rightarrow Material in front of calorimeter
- → Lateral shower shape modelling
- \rightarrow Tile scintillator calibration $(1.4 < |\eta| < 1.6)$
- → Photon reco classification
- \rightarrow Pile-up related residual energy shift ~ 10 MeV

Cross checks

→ Tested by extracting residual scales from other reference processes after applying full calibration procedure

<u>Z→eeγ & Z→μμγ:</u>

Probe photon energy scale

• Overall agreement within 0.3%

New developments: Super-Cluster reconstruction

• Previous reconstruction approach: fixed size clusters $(\Delta \eta \times \Delta \phi = 3 \times 7 (5 \times 5) \text{ barrel (endcap)})$ • New approach: Super-Clusters → Dynamical, topological cell clustering **Supercluster** → Recovery of Bremsstrahlung loss \rightarrow Energy resolution improved by up to 30% \rightarrow Mass resolution (J/ Ψ , Z, H) improved by 5-10% $E_{Raw} = 16.98 \text{ GeV}, E_{Gen} = 17.59 \text{ GeV}, \eta_{Gen} = -0.50$ $E_{Baw} = 13.57 \text{ GeV}, E_{Car} = 17.59 \text{ GeV}, \eta_{Car} = -0.50$

stefanie.morgenstern@cern.ch

Impact on physics analyses & first look into 2018 data

stefanie.morgenstern@cern.ch

Backup

LAr cell non-linearity

- Dependence of energy response with particle energy
- → Difference of energy response between electron clusters with all cells in high gain (HG) or at least one in medium gain (MG) observed
- → Not reproduced by MC
- \rightarrow Problematic as $Z \rightarrow ee \& H \rightarrow \gamma \gamma$ have different fractions of objects in MG
- Linearity of read-out electronics in each gain better than 0.1% but relative inter-calibration of different read-out gains can have large impact
- \rightarrow Measuring $Z \rightarrow ee$ events in special runs with lowered thresholds to study gain inter-calibration
 - → Highest energy cells in layer 2 are read out in MG (instead of HG)
- Effective energy scale shows small difference, most significantly in $0.8 < |\eta| < 1.37$
- Origin still under investigation
- → Related uncertainty up to 1% for high energy electrons

Material determination

- simulation crucial
- development
- \rightarrow Exploit E_{1/2} from unconverted photons and electrons to accordion
- geometries

stefanie.morgenstern@cern.ch