

ATLAS level-1 calorimeter trigger: Phase-I Upgrade Performance

Lin, Chiao-Ying University of Cambridge

On behalf of ATLAS Collaboration

ICHEP 2018

Outline

- LHC Upgrade
- ATLAS Phase-I L1Calo System
 - Structure
 - Expected Performance
- eFEX Algorithm
 - Supercell
 - L1 Electron
- jFEX Algorithm
 - jFEX Tower (jTower)
 - L1 Missing ET
 - L1 Jets

ATLAS L1Calo Trigger Run3

Required & Expected Performance

- 1. Low rate → Hardware limitation (bandwidth & storage)
- 2. High efficiency → Signal conservation (eg: W/Z events)
- 3. Consistency between trigger & offline objects

Run2 (Unprescaled Triggers)			Run3 (Unprescaled Triggers)			
Trigger	Offline threshold [GeV]	Rate [kHz]	Trigger	Offline threshold [GeV]	Rate [kHz]	
EM30	38	14.0	EM25	32	14.0	
XE90	250	10.0	XE70	200	13.0	
J100	200	7.0	J100	200	7.0	
4J25	4×60	3.3	4J25	4×60	3.3	
00						

<µ>=80

Detail in ATLAS Phase-I TDR

Supercell Structure

Granularity ($\eta \times \phi$) & Purpose:

η Range	Δη	$\Delta \phi$	layers	Purpose
0-2.5	0.025	0.1	2-4	EM
2.5-3.2	0.1	0.1	2	EM & Had
3.2-4.9	0.15	0.32	2-3	EM & Had

Finer granularity in hardware (backup)

Signal: digitized input

No upgrade for Run3 Tile Run2 system remains

L1 Electron - Algorithm

Rol Definition :

- 1. Local Maximum in EMB2
- 2. Isolation Selection with :

a)
$$R_{\eta} = 1 - \frac{3 \times 2E_T^{SC}}{7 \times 3E_T^{SC}}$$

b)
$$R_{had} = \frac{\sum E_T^{Tile}}{\sum E_T^{LAr} + \sum E_T^{Tile}}$$

$$\mathbf{C}) \quad w_{tot} = \sqrt{\left(\frac{\sum_{i} E_T^{sc_i} \times \left(\eta^{sc_i} - \eta^{sc_{max}}\right)^2}{\sum_{i} E_T^{sc_i}}\right)}$$

3. Coverage : $0 < |\eta| < 2.5$

Performance for each variable in backup

L1 Electron - Performance

CDS Link

Same Rate to Run2

- Threshold: 20GeV
- Plateau: 34GeV
- 1/3 Rate to Run2
- Threshold: 28GeV
- Plateau: 37GeV

Better resolution Better noise suppression

Variable	Et	Rη	R _{had}	W _{tot}
threshold	>28GeV	<0.12	<0.16	<0.02

jFEX Tower

Energy Evaluation:
$$\sum_{i} E_{T}^{sc_{i}}$$
 (summation on EM and Hadronic layers respectively)

Target objects: cone jets, MET, fat jet, tau

Granularity:		Δη	Δφ
	η < 2.5	0.1	0.1
	2.5< ŋ <3.1	0.2	0.2
	3.1< η <3.2	0.1	0.2
	3.2< ŋ <4.9	Varied (~ 0.425)	Varied (~ 0.425)

L1 $E_T^{missing}$ – Algorithm

- 1. Histograms of Et per tower (minimum bias sample)
- 2. Noise standard : 1σ (each tower)
- 3. Threshold: ~5 σ (optimized by best efficiency at rate=5.0kHz)

4.
$$E_T^{missing} = -(\sum \vec{E}_T^{tower_{EM}} + \sum \vec{E}_T^{tower_{Had}})$$

	EM			Had		
Inl	0-2.5	2.5-3.2	3.2-4.9	0-2.5	2.5-3.2	3.2-4.9
Noise [MeV]	40-60	40-100	N/A	0-20	40-100	40-300
Threshold [MeV]	200-300	200-500	N/A	0-100	200-500	200-1200

L1 $E_T^{missing}$ - Performance

Threshold: ~ 57 GeV

Same rate: 5kHz (lumi =2 × 10^{34} /s, < μ >=60)

Simple Cut-based algorithm → Similar turn-on to Run2

Rate	Threshold	efficiency	Negative Tower
5.0kHz	57GeV	28.8%	vetoed

L1 Jet - Algorithm

Seed as local Maximum

L1 Jet - Performance

3 jet trigger threshold: 26GeV Same rate to Run2

Single jet trigger threshold: 97GeV Same rate to Run2

Summary

- 1. Preliminary study for simple algorithm
- 2. Improvement could be seen from simulation
- 3. Significant potential in more algorithms (like pile-up suppression)

Backup

ATLAS Run2 Trigger System

ATLAS Trigger Towers Comparison

(box: minimal readout element)

copied from https://cds.cern.ch/record/2017813/files/ATL-LARG-SLIDE-2015-268.pdf

ATLAS LAr Noise Per Supercell Layer

Supercell Variable Performance

Offline electron pT for which this set of cluster cuts is 95% efficient [GeV]

Offline electron pT for which this set of cluster cuts is 95% efficient [GeV]

Barrel Supercells

LAr EM Barrel

Forward Supercells

