THE MICROMEGAS CONSTRUCTION PROJECT FOR THE ATLAS NEW SMALL WHEEL

ATHINA KOURKOUMELI-CHARALAMPIDI ON BEHALF OF THE ATLAS MUON COLLABORATION

THE ATLAS NEW SMALL WHEEL

Upgrade of the innermost end-cap region of the Muon Spectrometer

Upgrade required to operate the Muon Spectrometer at higher rates

Run III (starting 2021): 2 x design Luminosity HL-LHC (starting 2026): 5-7 x design Luminosity

Motivations:

- Tracking:
 MDT/CSC performance will drop significantly at
 HL-LHC rates (expected: up to 15 kHz/cm²)
- Install detectors which can withstand the rates
- Triggering:
 Current L1 Muon trigger relies mostly on Big Wheel:
 High fake rates on end-cap regions
- Extend trigger coverage up of $|\eta|=2.7$
- More robust trigger to reduce the fake rates

Above 90% trigger fake rates!

THE NEW SMALL WHEEL CONFIGURATION

Two detector types:

Micromegas (MM): primary tracking

Strip TGC (sTGC): primary triggering

4 Micromegas (MM) q-plet types ———

SM1/LM1 types: 5 PCBs '

SM2/LM2 types: 3 PCBs

32 q-lets per type

NSW:

16 sectors per wheel

- 8 small, 8 large

Sectors:

Sandwich of 2 sTGC
 and 2 MM quadruplets

MICROMEGAS DETECTOR

MM detector characteristics:

- Good spatial resolution ~100 um independent of incident angle
- Good track separation: 0.4 mm RO granularity
- Rate capability above 15 kHz/cm²

MM detector requirements:

- Provide online segments for triggering
 (1 mrad angular resolution)
- 15% resolution at 1 TeV

Quadruplet Structure:

- Two drift panel types
 - Single, Double
- Two readout panel types
 (back-back configuration)
 - Eta (strips perpendicular to η coord.)
 - Stereo (strips inclined by 1.5°)

Gas used: Ar/CO₂ (93/7)

Q-plet construction scheme

READOUT PCB PRODUCTION AND PANEL CONSTRUCTION

What is a readout panel made of?

- Readout PCBs on both panel sides
 - Etched Cu strips on 0.5 mm glass fiber (FR4) sheets
 - Resistive foils (produced in Japan) for spark reduction
 - Pyralux® pillars to maintain the amplification region height
- Internal structure: Honeycomb, Frames, Cooling bars

Readout panel construction procedure

- PCBs placed on granite table under vacuum
- Internal structure glued on PCBs
 - Stiffback/Vacuum bag method

DRIFT PANEL CONSTRUCTION AND Q-PLET ASSEMBLY

Assembled drift panel (Floating mesh):

- Stretched mesh
 - Mesh positioned on transfer frame
 - Stretch until reaching 9 N/cm tension (clamps)
 - Mesh glued on transfer frame
- Bare drift panel
 - PCBs: Outer skin (FR4-only), Cathode plane (Cu clad)
 - Internal structure: Honeycomb Sheets, Frames

Q-plet assembly

QA/QC AND TESTING

PCB QA/QC @ CERN

PCB/RO panel:

- Visual inspection
- Electrical tests
- Planarity mapping
- PCB/Layer Alignment (C-CCD/2-prong Rasfork)
- Gas leak

Mesh:

- Mesh tension

Ro panel Prisms Lenses CCDs Rasmasks Support Granite table

Panel map

(RMS 15-30 um).

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

0. table. unwrapping

- computer table logistics, QC form setup, check of supplier report, coffee machine
- 2. tool chest

tools, wipes, gloves & chemicals

- 3. top light table visual inspection, pairing of r
- visual inspection, pairing of res. foil and board (log db), etching quality, electrical tests
- 4. back light table
 - agreement holes & Cu pattern, edge precision & straightness, agreement resistive & Cu pattern, pillar pattern
 - rasmask granite table absolute dimensions & shape O(30μm)
 - granite table pillar height measurement
 - 7. table resistivity mapping 8. shelf
 - final storage
 - 9. table strip capacitance measurement

HV instability issues

Q-Plet:

6

5

- HV tests (air+Ar/CO₂)
- Gas tests
- Planarity
- Panel-panel alignment(4-prong Rasfork)
- Cosmic ray tests

Drift:

- Planarity
- Electrical insulation
- Gas leak

CLEANING PROCEDURES

Upon panel inspection under microscope residues of "ionic contamination" were observed Cleaning procedure:

- Wash panel with tap water
- Brush with NGL/CIF (Drift&RO)
- Rinse with tap water & brush
- Spray with high pressure DI water
- Also spray inside drift gap pipes
- Dry panels in drying box
 - Warm air (up to 45°C)
 - Low filtered air flow
 - Dry panels for 2-3 days

Mesh polishing:

Can correct mesh imperfections: sandpaper polishing

After cleaning procedures were adopted by all sites, the HV levels greatly improved

"lonic contamination" removed

HV STABILITY TESTS

HV test goal: Draw up to O(10 nA) currents in operating voltages

MM Operating Point

Vmax:

- 1000V in dry air (RH<10%)
- 590-610V in Ar+7%CO₂

Requirements:

- Low current ramp up
- Not long "conditioning"

Stable HV levels above operating point reached

LM2 preliminary results - Voltage vs. Current (nA)

		570V	580V	590V	600V	605V	610V		
	СН#	1 4 nA	4	2	7	7	6		
a		3	3	Trip	Tripped> 540 (stable voltage)				
Bottom layer	`	2	3	2	9	3	7		
ll g		2	2	3	6	5	5		
8		5 4	4	4	7	7	7		
		4	4	5	9	6	6		
	СН#	3	3	3	4	4	Tripped after 2 min		
l a		3	3	4	5	4	Tripped after 2 min		
Ton laver	`	3	3	4	7	5	6		
2		3	3	3	6	4	6		
		4	4	4	6	5	7		
1		(The same)		<u> </u>	·	·			

TEST BEAM RESULTS MO

Test Beams:

- SM1 M0 : June 2016

- SM2 M0 : August 2017 (Next Talk!)

- SM2 M1 : June/July 2018

- Cosmic ray tests

- Aging tests in GIF++ @CERN

- No aging after 10y HL-LHC equivalent dose

Perpendicular track performance @570-580V

Precision coordinate resolution: 81 um

2nd coordinate resolution: 2.4 mm

Efficiency: ~99%

Alignment: Within max deviation 80um

CONCLUSIONS

The NSW is going to replace the current wheels (MDT+CSC detectors) in order to run at higher rates

- Micromegas detectors: Primary Tracking

Try to install both wheels during Phase I

During q-plet testing, HV instabilities were noticed

- Linked to cleaning standards -> Cleaning procedure defined
- HV results showed great improvement after cleaning

Q-plets were tested in test beams/cosmic stands

- Results within specifications
- New test beam will show the results after applying the cleaning procedure
- More details on Maximilian's talk

BACK UP

MICROMEGAS REQUIREMENTS

Mechanical accuracies:

- Track accuracy:

- η coordinate: 30 um RMS

- Z coordinate: 80 um RMS

- Precision coordinate:

- Strip alignment: 40 um

- Layer-layer alignment: 60 um

- Panel-panel alignment: 60 um

- Panel planarity:

- Max. deviation ±100 um

- Max. RMS 37 um

track accuracy: 30 μm in η 80 μm in z

	Q-plet assembly					
SM1	M1, M2, M3 done, M4 to do					
SM2	M1, M2, M3 done, M4 to do					
LM1	M1, M2 done					
LM2	M1, M2 done					

MICROMEGAS ASSEMBLY

Sector assembly

Wheel transportation

The assembly will take place above surface

- Sectors will be mounted on NJD wheel
The wheel will then be transported to ATLAS point 1
and moved down to the shaft

