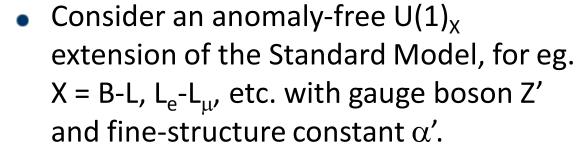
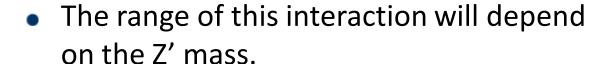
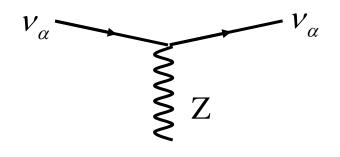
Long-range interactions at neutrino oscillation experiments

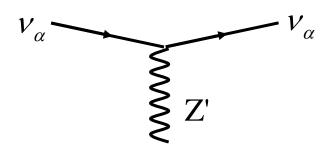
Long-range interactions (LRIs)

- Standard Model neutral-current interactions of neutrinos:
 - Flavour diagonal and universal









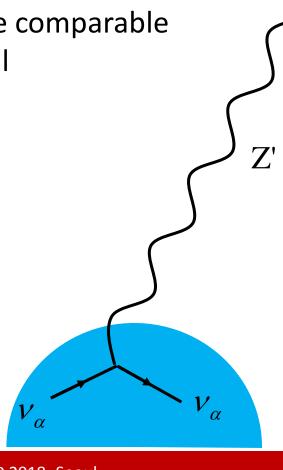
Long-range interactions (LRIs)

Baryons and electrons in sun: O(10⁵⁷)

Earth-sun distance: 1.5 x 10¹¹ m

• If α' is $O(10^{-52})$, then the long-range potential at earth with the sun as source will be comparable to the Wolfenstein matter potential

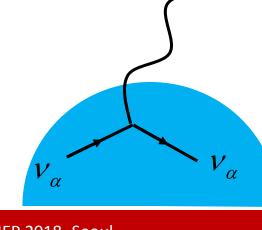
Joshipura, Mohanty 2004
Gonzalez-Garcia, do Holanda, Masso,
Zukanovich Funchal 2007
Bandyopadhyay, Dighe, Joshipura 2007
Davoudiasl, Lee, Marciano 2011
Samanta 2011
Agarwalla, Chatterjee, Dasgupta 2015
Agarwalla, Khatun, Thakore 2018
Wise, Zhang 2018



Long-range interactions (LRIs)

 Can future neutrino oscillation data distinguish between the standard oscillation scenario and LRIs?

 Will measurements at future neutrino facilities be affected by the presence of LRIs?



Formalism

Most general anomaly-free combination:

$$\eta(B - L) + \beta(L_e - L_\mu) + \gamma(L_\mu - L_\tau) + \delta(L_\tau - L_e)$$

$$\equiv p_0 B + p_1 L_e + p_2 L_\mu + p_3 L_\tau$$

Potential at earth because of matter in the sun:

$$V^{\odot} = \frac{\alpha'}{R_{ES}} (p_0 N_n^{\odot} + p_0 N_p^{\odot} + p_1 N_e^{\odot})$$
$$= \frac{\alpha' N_n^{\odot}}{R_{ES}} (p_0 + p_0 Y_p^{\odot} + p_1 Y_e^{\odot}) ,$$

• Similarly, for earth. Then,

$$V_{LR} = V^{\odot} + V^{\oplus}$$

Formalism

Neutrino propagation Hamiltonian:

$$\begin{bmatrix} V_{SM} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} p_1 V_{LR} & 0 & 0 \\ 0 & p_2 V_{LR} & 0 \\ 0 & 0 & p_3 V_{LR} \end{bmatrix}$$

$$\frac{\Delta m_{31}^2}{2E} \left\{ \begin{bmatrix} \hat{A} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} p & 0 & 0 \\ 0 & \xi/2 & 0 \\ 0 & 0 & -\xi/2 \end{bmatrix} \right\}$$

with
$$\hat{A} = 2EV_{SM}/\Delta m_{31}^2$$
, $p = 2E(p_1 - \frac{p_2 + p_3}{2})V_{LR}/\Delta m_{31}^2$
and $\xi = 2E(p_2 - p_3)V_{LR}/\Delta m_{31}^2$.

Formalism

Neutrino propagation Hamiltonian:

$$\begin{bmatrix} V_{SM} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} p_1 V_{LR} & 0 & 0 \\ 0 & p_2 V_{LR} & 0 \\ 0 & 0 & p_3 V_{LR} \end{bmatrix}$$

$$\frac{\Delta m_{31}^2}{2E} \left\{ \begin{bmatrix} \hat{A} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} p & 0 & 0 \\ 0 & \xi/2 & 0 \\ 0 & 0 & -\xi/2 \end{bmatrix} \right\}$$

with
$$\hat{A} = 2EV_{SM}/\Delta m_{31}^2$$
, $p = 2E(p_1 - \frac{p_2 + p_3}{2})V_{LR}/\Delta m_{31}^2$ and $\xi = 2E(p_2 - p_3)V_{LR}/\Delta m_{31}^2$.

Effect of LRIs at NOvA > Effect of LRIs at T2K

$$\sin^2 2\tilde{\theta}_{23} = \frac{\sin^2 2\theta_{23}}{(\xi - \cos 2\theta_{23})^2 + \sin^2 2\theta_{23}}$$

• If LRIs are sizeable, the effective value of θ_{23} measured by NOvA should deviate from maximal mixing

Effect of LRIs at NOvA > Effect of LRIs at T2K

$$\sin^2 2\tilde{\theta}_{23} = \frac{\sin^2 2\theta_{23}}{(\xi - \cos 2\theta_{23})^2 + \sin^2 2\theta_{23}}$$

- If LRIs are sizeable, the effective value of θ_{23} measured by NOvA should deviate from maximal mixing
- NOvA sees slight deviation, but is still compatible with T2K, consistent with maximal mixing

Gauge group	Best-fit α'		
	(90% bound)		
	$\times 10^{-52}$		
$L_e - L_\mu$	0.631		
	(1.26)		
$L_e - L_{\tau}$	0.794		
	(1.41)		
$B - L_e - 2L_\tau$	2.0		
	(3.55)		

Translating NSI bounds into LRI bounds

Note similarity with non-standard interactions (NSIs) in matter:

$$\sqrt{2}G_{F}n_{e} \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{\mu e} & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{\tau e} & \varepsilon_{\tau\mu} & \varepsilon_{\tau\tau} \end{bmatrix} \right\}$$

$$\varepsilon_{ee} = \frac{p_1 V_{LR}}{\sqrt{2} G_F n_e} \ , \ \varepsilon_{\mu\mu} = \frac{p_2 V_{LR}}{\sqrt{2} G_F n_e} \ , \ \varepsilon_{\tau\tau} = \frac{p_3 V_{LR}}{\sqrt{2} G_F n_e}$$

and
$$\varepsilon_{\alpha\beta} = 0$$
 for $\alpha \neq \beta$.

Farzan, Tortola 2018	ϵ_{ee}	$\mathcal{E}_{\mu\mu}$	$\epsilon_{ au au}$
90% bounds from various sources	0(1)	0(0.1)	0(1)

$$\begin{array}{lll} \alpha' < 0.11 \text{ x } 10^{-52} & \text{L_e-$L}_{\mu} & \longleftarrow & \text{Wise, Zhang 2018} \\ \alpha' < 0.75 \text{ x } 10^{-52} & \text{L_e-$L}_{\tau} \\ \alpha' < 3.85 \text{ x } 10^{-52} & \text{B-$L}_e$-2L}_{\tau} \end{array}$$

Farzan, Tortola 2018	ϵ_{ee}	$\mathcal{E}_{\mu\mu}$	$\epsilon_{ au au}$
90% bounds from various sources	0(1)	0(0.1)	0(1)

$$\begin{array}{lll} \alpha' < 0.11 \ x \ 10^{-52} & L_e - L_{\mu} & \longleftarrow & \text{Wise, Zhang 2018} \\ \alpha' < 0.75 \ x \ 10^{-52} & L_e - L_{\tau} & \\ \alpha' < 3.85 \ x \ 10^{-52} & B - L_e - 2 L_{\tau} & \end{array}$$

Caveats: The correspondence between bounds on NSIs and LRIs is not exact.

- Two-flavour vs three-flavour analyses
- Number of non-zero diagonal NSIs

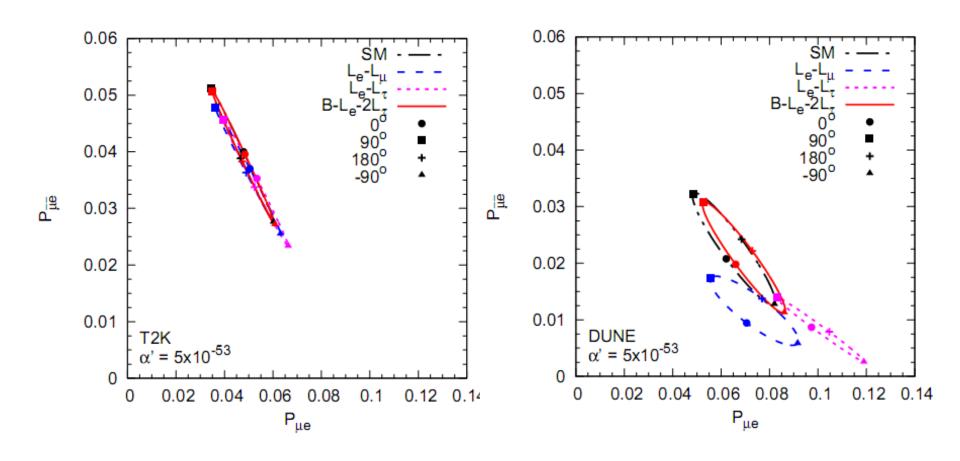
Farzan, Tortola 2018	ϵ_{ee}	$\epsilon_{\mu\mu}$	$\mathcal{E}_{ au au}$
90% bounds from various sources	0(1)	0(0.1)	0(1)

$$\begin{array}{lll} \alpha' < 0.11 \text{ x } 10^{\text{-}52} & \text{L_e-$L}_{\mu} & \longleftarrow & \text{Wise, Zhang 2018} \\ \alpha' < 0.75 \text{ x } 10^{\text{-}52} & \text{L_e-$L}_{\tau} \\ \alpha' < 3.85 \text{ x } 10^{\text{-}52} & \text{B-$L}_e$-$2L}_{\tau} \end{array}$$

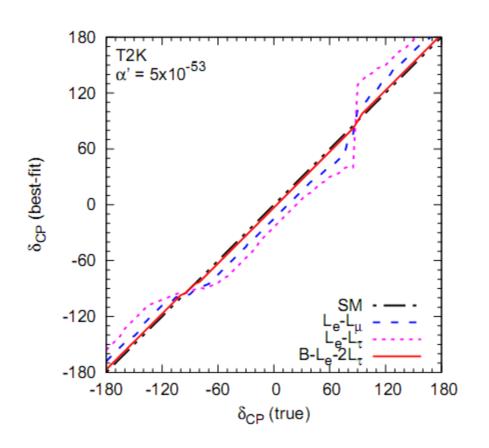
Caveats: The correspondence between bounds on NSIs and LRIs is not exact.

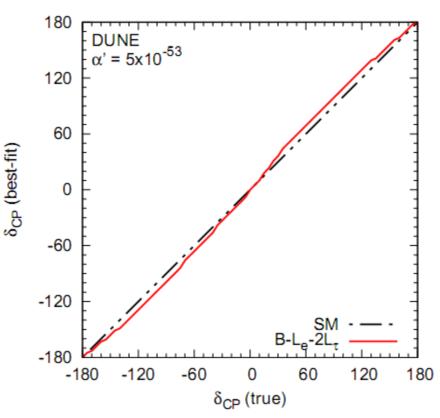
- Two-flavour vs three-flavour analyses
- Number of non-zero diagonal NSIs

Effect of LRIs on CP measurement at DUNE



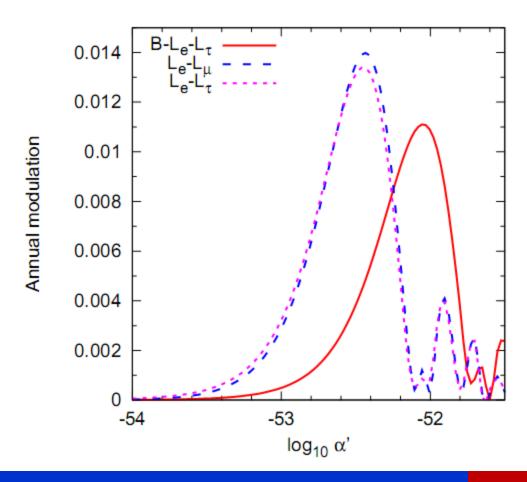
CP precision in presence of LRIs





Annual modulation

Distinguishing LRIs from terrestrial new physics effects

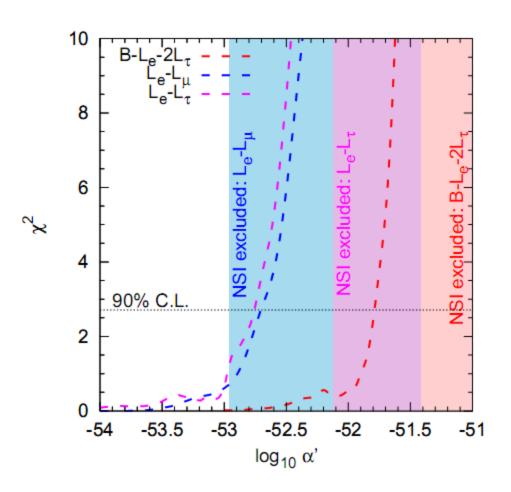


Annual modulation of atmospheric v_{μ} events at DeepCore

Summary

- Long-range interactions can arise out of U(1) extensions of the Standard Model with very light Z'
- For the models under consideration, current / future experiments can constrain α' to be less than $O(10^{-52})$ / $O(10^{-53})$
- Connecting NSI bounds to LRI bounds is straightforward but not necessarily accurate
- B-L_e-2L_{τ} model: Hard to distinguish from SM, hence weak bounds. But CP measurement is not compromised much.
- LRIs can be distinguished from other (earth-sourced) NSI models using annual modulation of high energy events

THANK YOU



DUNE, 40 kilotons 10e21 pot