Neutrino Mixing in a Rephasing-Invariant Parametrization

S. H. Chiu Chang Gung University Taoyuan, Taiwan

> July 6, 2018 @ICHEP 2018

> > ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

• Introducing an alternative parametrization for mixing matrix

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Some applications:
 - Neutrino mixing in matter
 - RGE for neutrino parameters
- Summary and Outlook

Parametrization for ν mixing matrix

• Neutrino flavor states and the mass eigenstates are mismatched:

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = [V_\nu] \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix},$$

where V_{ν} is the PMNS mixing matrix:

$$[V_{\nu}] = \begin{bmatrix} V_{e1} & V_{e2} & V_{e3} \\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3} \\ V_{\tau 1} & V_{\tau 2} & V_{\tau 3} \end{bmatrix}$$

- Choices of parametrization for V_{ν} are not unique:
 - Standard parametrization: 3 mixing angles (θ₁₂, θ₂₃, θ₁₃), and a Dirac phase δ.

- Absolute values: $|V_{\alpha j}|$
- $\operatorname{Im}(V_{\beta j}V_{\gamma k}V_{\beta k}^{*}V_{\gamma j}^{*}) \sim J$ (Jarlskog invariant)
- etc.

A rephasing-invariant parametrization

Consider the 3×3 mixing matrix V, with det V = +1:

- A set of six rephasing invariants can be constructed: $\boxed{\Gamma_{ijk} = V_{1i}V_{2j}V_{3k}}, \text{ with } (i, j, k) = \text{permutation of } (1, 2, 3)$
- There exits a matrix v, satisfying ΣV_{ij}v_{ik} = ΣV_{ji}v_{ki} = δ_{jk} ⇒ v_{ij} is the cofactor of V_{ij}

• From
$$VV^{\dagger} = 1 = \det V$$

 $\Rightarrow \boxed{V_{ij}^* = v_{ij}}$
• For example, $V_{11}^* = V_{22}V_{33} - V_{23}V_{32}$,
 $V_{12}^* = -(V_{21}V_{33} - V_{23}V_{31})$, etc.

- Thus, we can relate Γ_{ijk} to $|V_{lm}|^2$, e.g., $|V_{12}|^2 = V_{12}V_{12}^* = V_{12}(-V_{21}V_{33} + V_{23}V_{31}) = \Gamma_{231} - \Gamma_{213}$
 - All the $|V_{lm}|^2$ are equal to the differences of the Γ 's
 - All Γ 's have the same imaginary part, $\mathrm{Im}(\Gamma_{ijk}),$ which can be identified with J

$$\Gamma_{ijk} = R_{ijk} - iJ$$

• Separate the even and odd permutation of R_{ijk} : Re $(\Gamma_{123}, \Gamma_{231}, \Gamma_{312}) = (x_1, x_2, x_3)$, Re $(\Gamma_{132}, \Gamma_{213}, \Gamma_{321}) = (y_1, y_2, y_3)$.

•
$$(x_i, y_j)$$
 satisfy two constraints:
 $(x_1 + x_2 + x_3) - (y_1 + y_2 + y_3) = 1,$
 $x_1x_2 + x_2x_3 + x_3x_1 = y_1y_2 + y_2y_3 + y_3y_1.$
 \Rightarrow Any 4 out of the 6 parameters (x_i, y_j) can be used as a complete set of parameters for V

Parametrizing the physical observables

•
$$|V_{ij}|^2 = W_{ij}$$
 can be parametrized by (x_a, y_b)
 $W = \begin{pmatrix} |V_{11}|^2 & |V_{12}|^2 & |V_{13}|^2 \\ |V_{21}|^2 & |V_{22}|^2 & |V_{23}|^2 \\ |V_{31}|^2 & |V_{32}|^2 & |V_{33}|^2 \end{pmatrix}$
 $= \begin{pmatrix} x_1 - y_1 & x_2 - y_2 & x_3 - y_3 \\ x_3 - y_2 & x_1 - y_3 & x_2 - y_1 \\ x_2 - y_3 & x_3 - y_1 & x_1 - y_2 \end{pmatrix}$

,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Cofactors of elements in W form a matrix w, with $w^TW = (\det W)I$:

$$w = \begin{pmatrix} x_1 + y_1 & x_2 + y_2 & x_3 + y_3 \\ x_3 + y_2 & x_1 + y_3 & x_2 + y_1 \\ x_2 + y_3 & x_3 + y_1 & x_1 + y_2 \end{pmatrix}$$

•
$$J^2 = x_1 x_2 x_3 - y_1 y_2 y_3$$

• $(x_i, y_j) \Leftrightarrow (\theta_{ij}, \delta)$

Is this parametrization useful?

- Physical measurables can always be expressed in terms of (x_i, y_j) , e.g., $W_{\alpha i} = |V_{\alpha i}|^2 = x_a y_b$, etc.
- In many cases, the formulations are symmetric and simple

• e.g.,
$$P(\nu_{\alpha} \to \nu_{\beta}) = -4[\Lambda_{\gamma 3} \sin^2 \Phi_{21} + \Lambda_{\gamma 2} \sin^2 \Phi_{31} + \Lambda_{\gamma 1} \sin^2 \Phi_{32}] + 2J[\sin 2\Phi_{21} + \sin 2\Phi_{13} + \sin 2\Phi_{32}],$$

• $\Phi_{12} = \Phi_{12} = \Phi_{21} = (L/4E)(D_{12} = D_{12})$

$$\Lambda_{\gamma k} = \frac{1}{2} (W_{\alpha i} W_{\beta j} + W_{\alpha j} W_{\beta i} - W_{\gamma k})$$

- Easier to look for certain flavor mixing symmetry under permutation of generations
- Applications: ν mixing in matter, RGE of ν mass matrix, etc.
 - NOTE: Valid for Dirac ν, or lepton number conserving processes, e.g., ν oscillations

ν mixing in matter

• When ν propagate in matter, $D_i=m_i^2$ and $V_{\alpha i}$ are functions of $A=\sqrt{2}G_Fn_eE$

•
$$\boxed{\frac{dD_i}{dA} = |V_{ei}|^2 = W_{ei}}, \qquad \boxed{\frac{dV_{\alpha i}}{dA} = \sum_{k \neq i} \frac{V_{\alpha k} V_{ei}}{D_i - D_k} V_{ek}^*}$$

•
$$\left| \frac{d}{dA} W_{\alpha i} = \frac{d}{dA} (V_{\alpha i}^* V_{\alpha i}) = 2 \sum_{k \neq i} \frac{1}{D_i - D_k} Re(\Pi_{ik}^{\alpha e}) \right|$$

(with
$$\Pi_{ik}^{\alpha e} \equiv V_{\alpha i} V_{\alpha k}^* V_{ek} V_{ei}^*$$
)

•
$$\frac{\frac{1}{2}\frac{d}{dA}W_{ei} = \sum_{k \neq i} \frac{W_{ei}W_{ek}}{D_i - D_k}}{\frac{1}{2}\frac{d}{dA}W_{\alpha i} = \sum_{k \neq i \neq j} \frac{\Lambda_{\beta j}}{D_i - D_k}}, \text{ with } (\alpha, \beta) = (\mu, \tau)$$

•
$$\frac{d}{dA}(\ln J) = \frac{-W_{e1}+W_{e2}}{D_1-D_2} + \frac{-W_{e2}+W_{e3}}{D_2-D_3} + \frac{-W_{e3}+W_{e1}}{D_3-D_1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Numerical Solutions of D_i

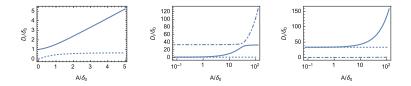


Figure: The evolution of D_1 (dotted), D_2 (solid), and D_3 (dot-dashed) for the ν -sector in matter under normal (left and middle) and inverted (right) orderings.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Numerical Solutions of $W_{\alpha i}$

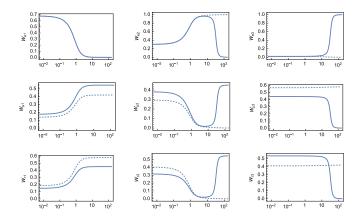


Figure: Evolution of $W_{\alpha i}$ as functions of A/δ_0 under the normal ordering (solid) and the inverted ordering (dashed).

Patterns of mixing elements in matter

Example: Normal ordering

$$W_0 \sim \begin{pmatrix} 2/3 & 1/3 & 0 \\ 1/6 & 1/3 & 1/2 \\ 1/6 & 1/3 & 1/2 \end{pmatrix}, W_l \sim \begin{pmatrix} 1/2 & 1/2 & 0 \\ 1/4 & 1/4 & 1/2 \\ 1/4 & 1/4 & 1/2 \end{pmatrix},$$

$$W_i \sim \begin{pmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 \end{pmatrix}, W_h \sim \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 1/4 & 1/4 \\ 1/2 & 1/4 & 1/4 \end{pmatrix},$$

$$W_d \sim \begin{pmatrix} 0 & 0 & 1 \\ 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \end{pmatrix}$$

0=vacuum, l=lower resonance, i=intermediate range ($A \sim 10\delta_0$ here), h=higher resonance, and d=dense matter ($A \rightarrow \infty$).

Approximate Solutions

- The behavior of $W_{\alpha i}$ in matter can be solved numerically
- How about analytical solutions?

 \Rightarrow Different pole terms in $dW_{\alpha i}/dA$ dominate at different ranges of A.

One may thus solve for the approximate solutions for W_{αi} at various regions of A [PRD 97, 055026 (2018)].

• Example: The term $\propto 1/(D_2-D_1)$ dominates at small A

•
$$\Delta_{21} \cong [A^2 - \frac{2}{3}\delta_0 A + \delta_0^2]^{1/2}$$

• $W_{e1} \cong \frac{1}{2}[1 - (A - \frac{1}{3}\delta_0)/\Delta_{21}]$
• $W_{e2} \cong \frac{1}{2}[1 + (A - \frac{1}{3}\delta_0)/\Delta_{21}]$

Invariants in matter

Matter invariant, e.g.,

$$\begin{array}{c|c} & J(D_1 - D_2)(D_2 - D_3)(D_3 - D_1) = \text{constant} \\ \hline & \frac{d}{dA}[J^2/(x_1 - y_1)(x_2 - y_2)(x_3 - y_3)] = 0 \\ \\ & \Rightarrow \boxed{\frac{J^2}{|V_{e1}|^2|V_{e2}|^2|V_{e3}|^2}} \text{ is constant in matter} \end{array}$$

- "partial matter invariants"
 - ► $(D_1 D_2)^2 |V_{e1}|^2 |V_{e2}|^2 \cong \text{constant},$ (low-A) $J^2 (D_1 - D_2)^2 \cong \text{constant}.$
 - ► $(D_2 D_3)^2 |V_{e2}|^2 |V_{e3}|^2 \cong \text{constant},$ (high-A) $J^2 (D_2 - D_3)^2 \cong \text{constant}.$

Renormalisation Group Equations (RGE)

- As the energy scale changes, one expects the pattern of regularity to evolve according to the RGE
 - \Rightarrow RGEs bridge the physics in high and low energy scales
- Parameters are all measured in low energies
 - \Rightarrow Necessary to bring RGE effects into the picture
- RGEs are simple when formulated in full matrices, but are very complicated in terms of physical observables
 ⇒ a large number of superfluous degrees of freedom must be stripped away

Patametrization for RGE

• In terms of (x_i, y_j) and W_{ij} , RGE for neutrinos [PLB 760, 544 (2016)] and quarks [PRD 93, 093006 (2016)] mixing parameters can be cast in a compact and simple form

- These equations exhibit manifest symmetry under flavour permutations.
- Some RGE invariants and approximate solutions of the parameters can be derived

Example: RGE Invariants for ν Parameters

We can show that

•
$$\left| \frac{d}{dt} [\ln J^2(\sinh^2 \ln r_{12})(\sinh^2 \ln r_{23})(\sinh^2 \ln r_{31}) \right| = 0$$

with
$$t = \ln(\mu/M_W)$$
, $r_{ij} = m_i/m_j$, and
 $\sinh^2 \ln r_{ij} = \frac{1}{4} \frac{(m_i^2 - m_j^2)^2}{m_i^2 m_j^2}$

•
$$|(|V_{\alpha i}|^2|V_{\beta j}|^2|V_{\alpha j}|^2|V_{\beta i}|^2 - \Lambda_{\gamma k}^2)[\Pi_{ij}(\sinh\ln r_{ij}^2)] = \text{constant}|$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

with $\Lambda_{\gamma k}=\frac{1}{2}(|V_{\alpha i}|^2|V_{\beta j}|^2+|V_{\alpha j}|^2|V_{\beta i}|^2-|V_{\gamma k}|^2)$

Summary and Outlook

- An alternative, rephasing-invariant parametrization to mixing matrices
- Highly symmetric evolution equations, invariants, and approximate solutions of physical parameters can be derived:
 - Neutrinos propagating in matter
 - RGE evolutions of Dirac neutrino and quark parameters
 - \Rightarrow There may exist certain flavor mixing symmetry under permutation of generations [arXiv: 1805.05600]
- Outlook
 - Correlation of leptons and quarks
 - Evolution, textures, and symmetries of mass matrices

etc.....