Analysis of $Gd(n,\gamma)$ reaction with ¹⁵⁵Gd, ¹⁵⁷Gd and ^{Nat}Gd targets at JPARC-ANNRI & Development of $Gd(n,\gamma)$ decay model for Gd-doped n/ν -detectors

Ali Ajmi 1,2

$on \ behalf \ of \ \mathbf{ANNRI-Gd} \ \ Collaboration$

(T.Tanaka¹, M.Sakuda¹, P.Das¹, R.Dir^{1,4}, W.Focillon⁷, M.Gonin⁷, K.Hagiwara¹, Y.Koshio¹, S.Lorenz^{1,5}, T.Mori¹, T.Kayano¹, I.Ou¹, M.Reen¹, T.Sudo¹, Y.Yamada¹, G.Collazuol², H.Harada³, N.Iwamoto³, A.Kimura³, S.Nakamura³, T.Yano⁶, M.Wurm⁵)

¹ Okayama University, ² INFN-Padova, ³ JAEA, ⁴ SRM U., ⁵ Mainz U., ⁶ Kobe U., ⁷ Ecole Polytechnique

ANNRI-Gd Collaboration

ICHEP2018-Seoul, July 05, 2018

Objective:

- Detection of $\bar{\nu}_e$ via IBD: $\bar{\nu}_e + p \rightarrow e^+ n$ vital to ν -detectors, with reduced background from ν_{μ} QE, ν_e ES etc.
- Pair of prompt and delayed coincidence signature offers tremendous bkg. suppression.
- Thermal neutrons captured in the medium: γ-emission. by proton → 2.2MeV γ in ~200µs; by Gd → ~8MeV γ in ~30µs.

- Cross section of thermal n-capture on natural Gd ~49000b, while ~0.3b on water(p). Presence of Gd enhances $\bar{\nu}_e$ signal selection drastically.
- For data-analysis, γ rays from n-capture need to be studied, hence simulation of these γ -rays in the detector (specially with partial energy deposition) is essential.

3

2/19

- ANNRI-Gd Collaboration
- Appropriate MC model of the gamma spectra: important pre-requisite for n-tagging efficiencies.
- Natural Gd used in detectors: many isotopes of Gd, but mainly two dominate

Isotope	Abundance[%]	n-Cross-section[b] ¹
^{152}Gd	0.200	735
154 Gd	2.18	85
155 Gd	14.80	60900
^{156}Gd	20.47	1.8
$^{157}\mathbf{Gd}$	15.65	254000
158 Gd	24.84	2.2
$^{160}\mathrm{Gd}$	21.86	1.4

• So targets for our study/data-checks: Gd₂O₃ enriched with ¹⁵⁷Gd (presented earlier), ¹⁵⁵Gd, Metal film of ^{Nat}Gd $n + {}^{155}Gd \rightarrow {}^{156}Gd^* \rightarrow {}^{156}Gd + \gamma$ rays (8.5MeV total) $n + {}^{157}Gd \rightarrow {}^{158}Gd^* \rightarrow {}^{158}Gd + \gamma$ rays (7.9MeV total)

¹Atlas of Nuclear Resonances, 2006

4/19

Experimental Facility:

- 3 GeV proton beam of 300kW at JSNS, JPARC-MLF complex.
- Incident on mercury target at 25 Hz (double-bunch mode: 100ns wide, 599 ns apart) \rightarrow spallation neutron beam source
- Be, Fe reflectors confine neutrons from escaping otherwise.
- Moderated by supercritical hydrogen, deliver n-beam of about $1.5 \times 10^7 / \text{cm}^2 / \text{s}$ (1meV-10eV).

• BL04: Accurate Neutron-Nucleus Reaction Measurement Instrument,

The ANNRI spectrometer:

- Located 21.5m from the neutron beam source
- 14 hexagon-Ge-crystal detectors in 2 clusters 26.8cm • apart
- Target placed at centre, 22% solid angle covered. .
- 20 Anti-coincidence shields BGO for veto: cover 55% solid angle (a)

- Analysed Data dated: Dec. 2014, Mar. 2013
- Li-layering to reduce background.

ъ

э

→

10

Data analysis:

- To measure: Single energy spectrum, Multiplicity (M), TOF (E_n)
- Hits: #Ge-crystals recording signal/ energy; energy threshold 100keV each.
- Devised algorithm for *clustering of hits* w.r.t. *different mutiplicity* e.g. M1HX (X=1,2,3,...), etc..

• Calibration sources: 60 Co, 137 Cs, 152 Eu, 35 Cl(n, γ)

"Photo-peak efficiencies of Crys.6"

"Uniformity-check of 14 crystals"

Data Spectra with Gadolinium samples:

• Single energy hit spectrum or M1H1 most dominant: $\sim 70\%$

Ali Ajmi, OkayamaU./INFN-PD

ANNRI-Gd Collaboration

Relative Intensity of ¹⁵⁵Gd:

- Continuum parts: $97.36 \pm 0.02 [\%]$
- \circ 12 Discrete levels: 2.64 \pm 0.02[%]

	1st γ (MeV)	Intensity (%)	
1	8.448	$0.018 {\pm} 0.002$	
2	7.382	$0.233 {\pm} 0.018$	
3	7.288	$0.453 {\pm} 0.026$	
4	6.474	$0.352{\pm}0.007$	
5	6.430	$0.324{\pm}0.027$	
6	6.348	$0.303 {\pm} 0.026$	
7	6.319	$0.094{\pm}0.005$	
8	6.034	$0.204{\pm}0.019$	
9	5.885	$0.174{\pm}0.029$	
10	5.779	$0.188 {\pm} 0.008$	
11	5.698	$0.286{\pm}0.008$	
12	5.661	$0.154{\pm}0.007$	

• Primary photo peak intensities agree with the Nuclear Structure Database (ENSDF)

Ali Ajmi, OkayamaU./INFN-PD

.9

About the "ANNRI-Gd" model:

- * Our model includes both: the dominant contribution from Continuum γ -emission model and the discrete spectral part.
- Continuum part modelling:
 - The probability(P) of transitioning from level E_a to level E_b emitting γ -ray(E_{γ}) given by "Transmission coefficient T" and "No. of levels $\rho(E_b)\Delta E_b$ "

$$P_a(E_a, E_b)\Delta E_b = \frac{T(E_a, E_b)[\rho(E_b)\Delta E_b]}{\int_0^{E_a} T(E_a, E_b)\rho(E_b)dE_b}$$

 $T(E_a, E_b)$: Photon strength function (PSF) depending on cross sec. (σ_i) and width (Γ_i) of energy level (E_i)

$$T(E_{\gamma}) = 2\pi E_{\gamma}^3 \sum_{i=1}^2 \frac{\sigma_i E_{\gamma} \Gamma_i^2}{(E_{\gamma}^2 - E_i^2)^2 + E_{\gamma}^2 \Gamma_i^2}$$

	Energy	$\sigma_i \text{ (mb)}$	Width (Γ_i)
	(E_i) MeV		MeV
^{156}Gd	11.2	180	2.6
	15.2	242	3.6
^{158}Gd	11.7	165	2.6
	14.9	249	3.8

ref.:Kopecky, PRC 47.312

ICHEP2018-Seoul, July 05, 2018

9/19

Ali Ajmi, OkayamaU./INFN-PD

- Discrete part model:
 - Continuum model not enough to match discrete peak intensities
 - $\circ\,$ Spectral components of discrete part added, tuned with that of $^{155}{\rm Gd}$ data (same for $^{157}{\rm Gd}$).
 - $\circ~$ The continuum and the discrete component generated by our model shown separately here for $^{155}{\rm Gd},$ along with the data.

Combined Model and Data for ¹⁵⁵Gd:

- $\circ~{\rm Continuous+Discrete} \rightarrow {\rm Working~Model}$ for MC events generation
- Single hit energy spectrum most dominant ($\sim 70\%$)

• Max spectral shape agreement of data and ANNRI-Gd model!

11/19

< ロ > < 同 > < 回 > < 回

Finally: Data and model for ^{Nat}Gd:

- We finally check our model vs. data taken with Natural Gd metal film (99.9% purity).
- MC for $^{Nat}Gd = MC$ for $^{155}Gd + MC$ for ^{157}Gd , in ratio of their relative cross-section and abundance.

Comparison of models:

- We compare spectral agreement between data and MC sample generated by:
- $\ensuremath{\boxtimes}$ 1. Our model or the ANNRI-Gd model
- $\not \square$ 2. GLG4sim model
- 3. Standard Geant4 using the default photon-evaporation model.
- * ANNRI-Gd model fits the best of three.

Model Comparisons for ¹⁵⁷Gd and ^{Nat}Gd here Ali Ajmi, OkayamaU./INFN-PD

Summary:

- ✓ Improved Monte Carlo models are necessary for better understanding and efficient analysis of data from the n/ν-detectors using Gd.
 ✓ The ANNRI-Gd model very well
- ✤ The ANNRI-Gd model very well agrees with the data taken with ¹⁵⁷Gd, ¹⁵⁵Gd, ^{Natural}Gd, for single and multi-gamma cases.
- $\label{eq:sectual_sectual} \begin{array}{l} {\bf 4} \\ {\bf 4} \end{array} \ \, \begin{array}{l} 1 \gamma \ \mbox{classification: energy spectrum} \\ {\rm deviation \ of} \ \sim \ 15\% \ \mbox{at 200 keV binning} \\ (2 \gamma: \ \sim 19\%, \ 3 \gamma: \ \sim 27\%). \end{array}$

 \bigstar Upcoming: Angular Correlations with $2\gamma s.$

Thank you !

Ali Ajmi, OkayamaU./INFN-PD

ICHEP2018-Seoul, July 05, 2018

15/19

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Back ups:

Ali Ajmi, OkayamaU./INFN-PD

16/19

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

17/19

(日)、

Ali Ajmi, OkayamaU./INFN-PD

ICHEP2018-Seoul, July 05, 2018

Deviation of Data/MC from unity:

19/19

(日) (同) (三) (三)