Contribution ID: 466 Type: Parallel

Analysis of Gd(n,gamma) reaction with 155, 157 and natural Gd targets taken with JPARC-ANNRI and development of Gd(n,gamma) decay model for Gd-doped neutron/neutrino detectors

Thursday 5 July 2018 15:15 (15 minutes)

The importance of a good model for the γ -ray energy spectrum from the radiative thermal neutron capture on Gadolinium (Gd) is specially increased in the present era of Gd-enhanced $\bar{\nu}_e$ -search detectors. Its an essential prerequisite for MC studies to evaluate the neutron tagging efficiency, in order to enhance signal sensitivity in the Gd-loaded $\bar{\nu}_e$ -search detectors.

The γ -ray spectra produced from the thermal neutron capture on enriched gadolinium targets (155 Gd, 157 Gd and Natural Gd) in the energy range 0.11 MeV to 8.0 MeV, were measured using the ANNRI Germanium Spectrometer at MLF, J-PARC [1, 2, 3]. Based on the data acquired and a GEANT4 simulation of the ANNRI detector, we reported the energy spectrum of 157 Gd(n, γ) and

developed a γ -ray emission model of $^{157}\mathrm{Gd}(n,\gamma)$ in our previous publication [1].

We now present the analysed data of 155 Gd(n, γ) and $^{\rm nat}$ Gd(n, γ) reactions, the energy spectra of γ -rays and an improved model for 155 Gd(n, γ), 157 Gd(n, γ) and $^{\rm nat}$ Gd(n, γ) reactions. The consistency of the results from the devised model is checked among all the 14 germanium crystals, at the level of 15% spectral shape deviation at 0.2 MeV binning.

Author: ALI, Ajmi

Co-authors: SAKUDA, Makoto (Okayama University); TANAKA, T.; HAGIWARA, K.; SUDO, T.; REEN, M.; DAS, P.; DIR, R.; YAMADA, Y.; OU, I.; MORI, T.; KAYANO, T.; KOSHIO, Y.; YANO, T.; KIMURA, A.; NAKAMURA, S.; IWAMOTO, N.; HARADA, H.; LORENZ, S.; WURM, M.; FOCILLON, W.; GONIN, M.; COLLAZUOL, Gianmaria (Universita e INFN, Padova (IT))

Presenter: ALI, Ajmi

Session Classification: Neutrino Physics

Track Classification: Neutrino Physics