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Science Motivation

Quantum initiative

« Atom de Broglie wavepackets in superposition separated by up to 10 meters

« Durations of many seconds, up to 9 seconds (full height launch)

+ Testbed for the application of guantum entanglement

* Spin squeezed atom sources to reduce sensor noise below the standard quantum limit

Dark sector physics

+ Time-dependent signals caused by ultra-light dark matter candidates

« Dark matter that affects fundamental constants: electron mass, fine structure constant
« Time-dependent EP violations from B-L coupled dark matter

 New forces

Gravitational wave detector development

* Probe for studying cosmology

« Explores range of frequencies not covered by other detectors
* LIGO sources before they reach LIGO band

* Predict when and where events will occur



MAGIS

Matter wave Atomic Gradiometer Interferometric Sensor
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® Atoms

e Compare two atom ensembles separated by baseline
e Atoms as inertial test masses, follow geodesics
e Atoms as clocks

e Common laser phase noise
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MAGIS-100 detector at Fermilab : B
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« MINOS, MINERVA and NOvVA experiments use the
NuMI beam

« 88 m at Fermilab, permitting a 100 m-scale baseline
atom interferometry

» Intermediate step to full-scale detector for GWs
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Light Pulse Atom Interferometry
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Increase acceleration sensitivity:

e Long duration

8.7 m at Stanford supporting the e Large wavepacket separation
present 10 m-scale experiment



Large space-time area atom interferometry

Long duration (2 seconds),
large separation (>0.5 meter) .
matter wave interferometer
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Kovachy et al., Nature 2015



~90 meters

50 meters

50 meters
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Source 1

Source 2

Source 3

Detector modes of operation

I. Max drop time >3 seconds (sources 1,2)
II. Max free fall with launch (sources 2,3)

III. Max baseline (sources 1,3)

IV. Newtonian noise rejection (sources 1,2,3)

V. Extreme QM, 4 - 9 s (drop 1 or launch 3)



Multiple ways to detect DM Axions

1. Affects fundamental constants such as the electron mass or fine
structure constant will change the energy levels of the quantum
states used in the interferometer

2. Causes accelerations: can be searched for by comparing the
accelerometer signals from two simultaneous quantum
Interferometers run with different Sr isotopes

3. Affects precession of nuclear spins, such as general axions.
Searched for by comparing simultaneous, co-located
iInterferometers with the Sr atoms in different quantum states
with differing nuclear spins



Ultralight scalar dark matter

Ultralight dilaton DM acts as a background field (e.g., mass ~10-1> eV)
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Differential atom interferometer response

e) Excited state phase evolution:
z g) A¢ ~wa (2L/c)
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2T+%  Two ways for phase to vary:

L
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0L = hl  Gravitational wave
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Each interferometer measures
the change over time T

Position
=

Laser noise is common-mode

‘0 0  7.2L 57,2 Ssuppressed in the gradiometer
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Graham et al., PRL 110, 171102 (2013).
Arvanitaki et al., arXiv:1606.04541 (2016).
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Via coupling to the electron mass
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e Sensitivity to ultralight dark matter field coupling to the electron mass
e with strength dm.,

e shown as a function of the mass of the scalar field m

e (or alternatively the frequency of the field - top scale)
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Sensitivity via coupling to a
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e Sensitivity to dark matter via coupling to the fine structure constant
e with strength d_,
e shown as a function of the mass of the scalar field m

e (or alternatively the frequency of the field - top scale).
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B-L Coupled Forces

uHz mHz Hz kHz MHz
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Sensitivity to a B-L coupled new force, with 10"%¢g /+/Hz acceleration sensitivity
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Strategy

Current: 10-meter demonstration experiments at Stanford
Macroscopic quantum mechanics
Prototype clock interferometer apparatus

First step: 100-meter baseline at Fermilab
Quantum initiative
Dark sector
Gravitational wave detector development

Second step: km-scale at Sanford lab, DUNE shaft
Increased sensitivity to dark sector
Full-scale GW detector
Many quantum nodes for noise rejection
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Summary & Present Status

* New experiment at Fermilab
 potential to scale much larger to SURF

« Using Atom Interferometry to:
« Explore the dark sector

« Test quantum mechanics at Large Distance
Scales

* Prototype for a mid-band gravity wave detector
* Proposal currently with the Fermilab PAC
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Questions or Comments?
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Backup
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CAD model
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Images from Linda Valerio (Fermilab)
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Surrounding area at top of shatft.

coleman@liverpool.ac.uk - ICHEP 2018
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Immediate area at top. Compressor will be removed.
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Systematics

Laser frequency noise
Laser wavefront aberrations
Magnetic fields

Seismic vibration

Coriolis effects

Laser pointing jitter

AC Stark shifts

Initial cloud kinematics
Mean field shifts

Imaging aberrations

Gravity Gradient Noise (GGN)
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Figure 10: MAGIS-100 configurations. The basic detector design consists of three atom
sources (blue bands) placed along the vacuum tube at the top, middle, and bottom. Light
pulses (red) travel along the vacuum tube and interact with atoms at each of these locations.
(a) Maximum drop time gradiometer. The top and middle atom source are dropped 50 meters
and are detected at the middle at bottom locations, respectively. (b) Maximum baseline
gradiometer. The top and bottom sources are launched on short (~ meter-scale) trajectories
and detected at the top and bottom. (¢) GGN characterization. All three sources can be

used with short launches in order to explore Newtonian noise variation along the baseline (see
Sec. 3.4.1).

ICHEP 2018

23



Gravity Gradiometer

Phase shear
readout of two
interferometers

L (20 cm)

(340 ms) (700 ms)
Gradiometer interference fringes

Az =12cm
30 1k P. Asenbaum et al., PRL 2017. 24

Az = 4cm
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Gravitational wave frequency bands

Stochastic
backgroun

Extreme mas
ratio inspiral

Massive binaries

Resolvable galactic

binaries LiGo

Type 1A
supernovae

aLIGO

Compact binary

inspirals
Core collapse
supernovae
Mid-band
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Frequency / Hz

There is a gap between the LIGO and LISA detectors (0.1 Hz — 10 Hz).

ICHEP 2018

Moore et al., CQG 32, 015014 (2014)
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Sky position determination

Sky localization
precision ~A/R

Mid-band advantages
- Small wavelength A

- Long source lifetime
(~months) maximizes
effective R

Images: R. Hurt/Caltech-JPL; 2007 Thomson Higher Education 26



GW sensitivity
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Full-scale GW Sensitivity
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Phase shift from tidal force

Spacetime curvature across a single particle's wavefunction
GR: gravity = curvature
Curvature-induced phase shifts as first

true manifestation of gravitation in a
quantum system
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Simple Example: Two Atomic Clocks

Phase evolved by atom after time T
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Simple Example: Two Atomic Clocks

1 1 B 1 1
219y + 5 le) oy VATl
NN
GW changes
light travel time

AT ~ hL/c

Time
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Phase Noise from the Laser

The phase of the laser is imprinted onto the atom.

Laser phase noise, mechanical platform noise, etc.
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Laser phase is common to both atoms — rejected in a differential measurement.
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