

CANDLES project to search for neutrino-less double beta decay of ⁴⁸Ca

Yasuhiro Takemoto for CANDLES collaboration Osaka Univ. RCNP

CANDLES Collaboration

Outline

- Double Beta Decay of ⁴⁸Ca
- CANDLES experiment
 > Upgrades on Detector
 > Running Status
 > Current Limit
- R&D for Next/Future CANDLES

Double Beta Decay of 48Ca

CANDLES III experiment

conversion

Calcium Fluoride for Studies of Neutrino and Dark Matters by Low Energy Spectrometer

• $\tilde{I} \mu s$ pulse \Rightarrow PSD

water

BG Reduction Scheme

Typical Light Emission & Waveform

1000

• Event by event fit to reference α , β waveform

0.1

0.0

500

1000

3500

Energy (keV)

Upgrades on Current Data

Pb, B Shield Construction

- Pb Shield : Top (7cm) outside, Bottom (10cm) inside Side (10cm) + Barrel (12cm)
- B Shield : Top, Side (4mm 40wt% B4C sheet) outside Pb, inside SS Tank Bottom (liquid type) inside SS Tank

Confirmation of Upgrades

BG measurement w/ Pb+B shield, low BG material, Cooling (~4.9°C), Coil

- All upgrades successfully reduced BG by designed magnitude !
- Analytical internal BG reduction is next key for current CANDLES * only loose LS cut is applied on this plot

Internal BGs: ²³²Th daughters

10

Data & Event Selection

11

ICHEP2018

No event in high purity crystals is confirmed.

Current Limit on $T_{0\nu\beta}^{1/2}$

Pileup cut > 20ns

 $-1 \sigma < 0 \nu \beta \beta$ window $< 2 \sigma$

²⁰⁸Tl cut

12

* ELEGANT IV Exposure : 4947kg · d (2yr<) $0 \nu \beta \beta$ eff. : 0.53 $T_{0\nu\beta\beta}^{1/2}$ 48Ca : 5.8x10²² yr

10

~ | |

Livetime (yr)

Event in ROI

Expected BG

 $T^{1/2}_{0
u\beta\beta}$ ⁴⁸Ca (yr)

Sensitivity (yr)

 $0 \nu \beta \beta$ eff.

CANDLES continues to explore the forefront $T_{0\nu\beta\beta}^{1/2}$ in ⁴⁸Ca !

> \Rightarrow Further continuous data taking to study energy uncertainty due to baseline drift within IFADC value

Future CANDLES

	CANDLES III+	CANDLES IV	CANDLES V
⁴⁸ Ca Abundance	0.187%	2%	50%
⁴⁸ Ca Weight	0.35 kg	25 kg	~600 kg
Energy Res.	6%	2.8% (required)	I.0% (required)
$\langle m_{ m _{ u}} angle$ sensitivity	500 meV	80 meV	9 meV
Feature	Cooling CaF2 Low BG	+ Massive ⁴⁸ Ca + Much Iow BG DH ⇒ IH	++ Massive ⁴⁸ Ca Scinti. Bolometer IH ⇒ NH

- Variety of ²⁰⁸TI. Among crystals
 - > stable purity control
 - higher purity crystal
- Small number of target nuclei
 high & large amount enrichment
- Inevitable $2\nu\beta\beta$ background
 - > much higher energy resolution
 - \succ scintillator \Rightarrow bolometer

Enrichment of ⁴⁸Ca

- 14 ICHEP2018
- Multi-channel counter current electrophoresis (MCCCE)

Boron Nitride plate 80mmøx10mm, x69 0.8mmø channel

Prog. Theor. Exp. Phys. 2015, 033D03

- Migration speed diff. btw. ⁴⁰Ca / ⁴⁸Ca.
- Principle was demonstrated.

 Much higher enrichment & reproducibility w/ different parameter configuration
 Large amount enrichment

 Parallel R&D on crown-ether + micro-reactor crown-ether resin + chromatography laser isotope separation.

Scintillating Bolometer

- I% or less Energy res. for IH.
 Scintillator → Bolometer
- Simul. meas. of heat and scinti. ^{4.27} to discriminate β / α (²³⁸Uα 4.27MeV ~ Q0νββ)
 - ⇒ Scintillating Bolometer
- Established technique. CRESST-II, Lucifer, AMoRE

Detector :

Ge wafer + NTDGe thermistor + PTFE reflector CaF2 (Eu) + CaF2(pure)

- Dilution refrigerator @ Osaka Developed for DM search with LiF. Cooling power is $2 \mu W$ @ 20mK
- Long time operation at 500mK
- Struggling to IOmK (³He/⁴He mixed gas)
- ⇒ New refrigerator to accelerate : Triton300 <10mK control, >6µW @ 20mK □ soon assembled

Toward High Purity

- Same best purity repetition to increase mass
 - Collabo. w/ a material provider
 - Under RI evaluation of sample crystals
- Higher purity crystal production for future large amount crystals

- Collabo. w/ another material provider
- Under evaluation of material powder by Ge

By study for CaF2 crystal from CaCl2

- Enrichment is mainly done in CaCl2
- For crystalize, CaF2 is required
- ⇒ Replace CaCl2 to CaF2
- \blacksquare confirmation of CI separation
- □ re-bonding to F
- introduce "displacement chromatography" to reduce U/Th

Summary

- CANDLES : $0 \nu \beta \beta$ search by ⁴⁸Ca (350g) / CaF₂ (305kg)
 - > highest Q (4.3MeV), potential 0 BG observation, important for IH/NH
- Detector upgrade in 2015-2016
 - > Passive Pb, B shield against largest BG : (n, γ) : 10⁻² reduction
 - > Detector cooling & Geomagnetic Compensation coil
 - ♦ $17^{\circ}C \Rightarrow 4.9^{\circ}C$ →→ +47% light yield
- Preliminary $T_{0\nu\beta\beta}^{1/2}$ limit on ⁴⁸Ca : 6.2x10²² yr in 131 days (sensitivity 3.6x10²² yr)

(ELEGANT IV > 5.8×10^{22} yr)

> 5.5 exposure already, and continue to explore the forefront.

- Future CANDLES for larger ⁴⁸Ca mass, better Eres, purer CaF₂
 - > ⁴⁸Ca enrichment with MCCCE, Clown Ether, Laser Separation
 - Scintillating Bolometer study, accelerated with new DR
 - > purer CaF₂ selection and CaCl₂⇒CaF₂ production

고맙습니다! Thank you !

ICHEP2018 SEOUL

Type : Parallel

CANDLES project to search for neutrino-less double beta decay of ⁴⁸Ca

Saturday, 7 July 2018 10:15 (15)

Neutrino-less double beta decay $(0\nu\beta\beta)$ is acquiring great interest after the confirmation of neutrino oscillation which demonstrated nonzero neutrino mass. Measurement of $0\nu\beta\beta$ provides a test for the Majorana nature of neutrinos and gives an absolute scale of the effective neutrino mass. In order to search for $0\nu\beta\beta$ of ${}^{48}Ca$, we proposed CANDLES project and a detector system by using CaF₂(pure). The CANDLES III system, which is one of the CANDLES project, aims at a high sensitive measurement by a characteristic detector system. The system realizes a complete 4π active shield by immersion of the CaF2 scintillators in liquid scintillator. The active shield leads to a low background condition for the measurement. Now we have developed the CANDLES III system, which contained 350 g of ⁴⁸Ca at the Kamioka underground laboratory. In 2016, we have installed a shielding system in the CANDLES III system to reduce background events by the high energy γ -rays, which were emitted from neutron capture reaction on surround materials. By the system, we reduced the background events from neutron capture by two orders of magnitude. After this upgrade, we started a double beta decay measurement and obtained result. Furthermore, we started development of next detector system. In this system, we will use a CaF2 scintillating bolometer and enriched 48Ca. In this paper, we will report result of 48Ca double beta decay measurement by using the CANDLES III system and current status of the CaF₂ scintillating bolometer and enrichment of ⁴⁸Ca.

Primary author(s): UMEHARA, Saori (Osaka University); TAKEMOTO, Yasuhiro (Osaka University); FOR CANDLES COLLABORATION

Presenter(s) : TAKEMOTO, Yasuhiro (Osaka Unversity)

Session Classification : Neutrino Physics

Track Classification : Neutrino Physics