Contribution ID: 749 Type: Parallel

CANDLES project to search for neutrino-less double beta decay of ⁴⁸Ca

Saturday 7 July 2018 10:15 (15 minutes)

Neutrino-less double beta decay $(0\nu\beta\beta)$ is acquiring great interest

after the confirmation of neutrino oscillation

which demonstrated nonzero neutrino mass.

Measurement of $0\nu\beta\beta$ provides a test for the Majorana nature of neutrinos

and gives an absolute scale of the effective neutrino mass.

In order to search for $0\nu\beta\beta$ of $^{48}\mathrm{Ca},$

we proposed CANDLES project and a detector system by using CaF₂(pure).

The CANDLES III system, which is one of the CANDLES project, aims at a high sensitive measurement

by a characteristic detector system.

The system realizes a complete 4π active shield

by immersion of the CaF₂ scintillators in liquid scintillator.

The active shield leads to a low background condition for the measurement.

Now we have developed the CANDLES III system,

which contained 350 g of 48 Ca at the Kamioka underground laboratory.

In 2016, we have installed a shielding system in the CANDLES III system

to reduce background events by the high energy γ -rays,

which were emitted from neutron capture reaction on surround materials.

By the system,

we reduced the background events from neutron capture by two orders of magnitude.

After this upgrade, we started a double beta decay measurement

and obtained result.

Furthermore, we started development of next detector system.

In this system, we will use a CaF2 scintillating bolometer

and enriched ⁴⁸Ca.

In this paper,

we will report result of 48 Ca double beta decay measurement by using the CANDLES III system and current status of the CaF₂ scintillating bolometer and enrichment of 48 Ca.

Primary authors: UMEHARA, Saori (Osaka University); TAKEMOTO, Yasuhiro (Osaka University); FOR

CANDLES COLLABORATION

Presenter: TAKEMOTO, Yasuhiro (Osaka Unversity)

Session Classification: Neutrino Physics

Track Classification: Neutrino Physics