

New results from GERDA

Matteo Agostini for the GERDA collaboration

Technical University of Munich (TUM)

ICHEP 2018, July 4-11 2018, Seoul, South Korea

GERDA approach

Search for $0\nu\beta\beta$ decay of ⁷⁶Ge:

⁷⁶Ge → ⁷⁶Se + 2e⁻

- > $\Delta L = 2 \rightarrow$ beyond Standard Model physics
- Majorana mass or other L-violating physics

High purity Ge detectors (87% ⁷⁶Ge):

- source = detector → high efficiency
- radio-pure
- → no intrinsic background
- high density
- → e⁻ absorbed in 1-2 mm
- semiconductor
- → ΔE < 0.1% at Q_{ββ}

0vββ signature:

- point-like energy deposition in detector bulk volume
- sharp energy peak at 2039 keV (FWHM = 3-4 keV)

GERDA Strategy: High Resolution & Background Free

Background expectation in $Q_{\beta\beta} \pm 2\sigma \rightarrow <0.2$ counts

The Ge Detectors

HPGe detector signals:

- signal induced by drift of electron-hole clusters
- time-projection chamber
- identification of events with multiple energy depositions
- identification of events on the surface

Signal/Background Discrimination!

n⁺ electrode (3-4 kV) p^+ electrode (0 V)

Detectors mounting:

- > low mass holders
- contacting with wire bonding

- ➤ 7 strings
- ➤ 40 detectors

- ➤ 30 enriched BEGe (20 kg)
- > 3 natural Coax (7.6 kg)

LAr scintillation detection:

- 16 PMTs (9 top / 7 btm)
- ➤ ~1 km fibers with WLS + 90 SiPMs
- nylon mini-shroud around each string coated with WLS

1001

Phase II Data taking

- ➤ Dec 2015 → Apr 2018: 835 d live time ➤ Phase II Exposure: 59 kg yr
- > 93% duty cycle

Phase I + Phase II: 82 kg yr

Energy Scale

- Weekly calibration with Th-228 sources
- Fluctuations between calibrations <1 keV</p>
- Resolution at Qbb better than 0.1%
 (3-4 keV FWHM)

The Background before Analysis Cuts

Pulse shape discrimination

a from ²¹⁰Po

0νββ efficiency → $ε_{BEGe}$ = (87.6+2.5)%

 $\epsilon_{coax} = (71.2 + 4.3)\%$

Active background suppression - PSD

Expected suppression factors at $Q_{\beta\beta}$:

- ~ 100 for a from 210 Po
- ~ 2 for γ from ²⁰⁸Tl/²¹⁴Bi
- ~ 100 for β from 42 K

LAr scintillation anti-coincidence

Active background suppression - LAr veto

Expected suppression factors at Q_{BB} :

- ~ 100 for γ from ²⁰⁸Tl
- ~ 2 for γ from ²¹⁴Bi

Active background suppression - PSD & LAr veto

Lowest background in the ROI!

Statistical analysis

Phase I & II combined fit:

- frequentist unbinned
 likelihood
- simultaneous fit of 7 data sets
- best fit for no Ονββ signal
- ➤ T^{ov}_{1/2} > 0.9 10²⁶ yr (90% C.L.)
- sensitivity T^{0v}_{1/2} > 1.1 10²⁶ yr
- ≻ m_{bb} < (0.11 0.25) eV

Implications for neutrino physics

- Degenerate Majorana masses probed!
- Next target inverted ordering band

 Ονββ searches, cosmological surveys and direct mass measurements give complementary information!

Outlook

GERDA: high-resolution & background-free search for $0\nu\beta\beta$ in ⁷⁶Ge:

BI = 6 10⁻⁴ cts / (keV kg yr) $\Delta E < 0.1\%$ at Q_{BB}

GERDA probed $T_{1/2}$ values at the 10^{25} yr scale. Pioneering exploration of the 10^{26} yr scale!

GERDA keeps taking data. LEGEND-200 is in preparation to reach $T_{1/2}$ above 10^{27} yr

