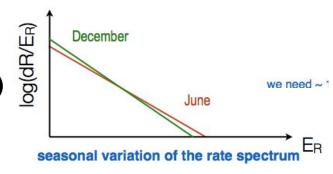
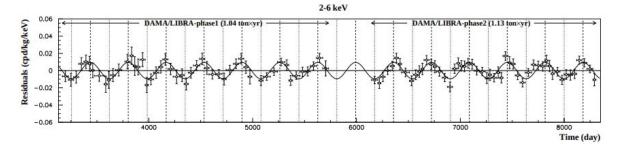


Dark matter search with the SABRE experiment

Giulia D'Imperio for the SABRE collaboration XXXIX International Conference of High Energy Physics, Seoul, South Korea

07/07/2018


Dark matter through annual modulation


- WIMPs (Weakly Interacting Massive Particles) are promising candidates for dark matter
- Direct detection principle: dark matter scattering off detector nuclei
- Annual modulation of the count rate is a model independent signature
 - period 1 year
 - maximum of modulation around June 2nd

Expected rate in an Earth-based detector is modulated, small modulation fraction S_m/S_0 ~O(1%)

$$R \approx S_0 + S_m \cos(\frac{2\pi}{1 \text{yr}}(t - t_0))$$

DAMA/LIBRA experiment at LNGS modulation phase1 + phase2: total exposure 2.17 ton x yr

arXiv:1805.10486

DAMA background ~1 cpd/kg/keV DAMA modulation 0.0095 cpd/kg/keV

Modulation significance 11.9σ C.L. ²

Sodium-iodide with Active Background REjection

1. Development of ultra-high purity NaI(TI) crystals

- High purity Nal powder
- Clean crystal growth method

2. Low energy threshold

High QE Hamamatsu PMTs directly coupled to the crystal

3. Passive shielding + active veto

Unprecedented background rejection and sensitivity with a NaI(TI) experiment

4. Two identical detectors in northern and southern hemispheres

- seasonal backgrounds have opposite phase in northern and southern hemispheres
- dark matter signal has same phase

The SABRE crystal

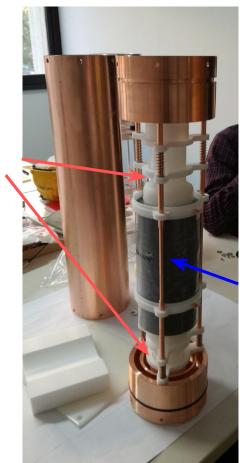
Ultra pure NaI(TI) crystals

- Astro Grade powder (Sigma Aldrich)
- clean growth procedure: collaboration between Princeton and RMD, Boston
- a crystal of 3.6 kg (6 kg before cut) has been produced recently (131 mm length x 98 mm diameter)

- Internal background in the crystal "0.15 cpd/kg/keV in [2-6] keV
- dominated by Rb, but upper limit

Rate [cpd/kg/keV]	SABRE-PoP — Tot Background, veto on — ⁸⁵ Kr — ²³² Th — ⁸⁷ Rb — ²³⁸ U — ²¹⁰ Pb	
10 ⁻¹		
10 ⁻²		
10 ⁻³		
10 ⁻⁴ 0	0 2 4 6 8 10 12 14 16 18 2 E [keV	_ 20 /]

Element	DAMA powder	DAMA crystals	Astro-Grade	SABRE crystal
	[ppb]	[ppb]	[ppb]	[ppb]
K	100	~13	9	9
Rb	n.a.	< 0.35	< 0.2	< 0.1
U	~0.02	$0.5 - 7.5 \times 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$
Th	~0.02	$0.7 - 10 \times 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$

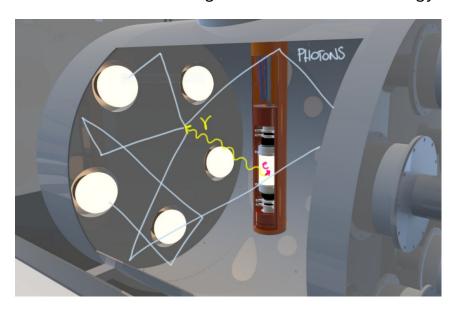

(*) 2 kg test crystal grown from Astro Grade powder with same technique

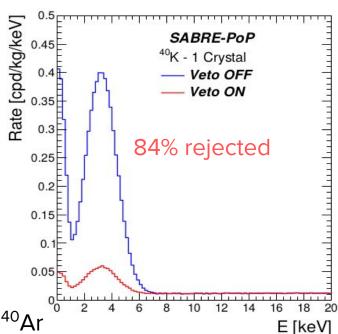
Low energy sensitivity

SABRE aims to be sensitive to the energies covered by DAMA/LIBRA [1-6] KeV_{ee} and below

Current Design:

- 2 x Hamamatsu R11065-20 3" PMTs per crystal with High QE: >35% and minimal contaminations
- Direct PMT-Crystal coupling for maximal light yield
- Custom preamplifiers and super bialkali photocathodes → less afterglow and dark noise

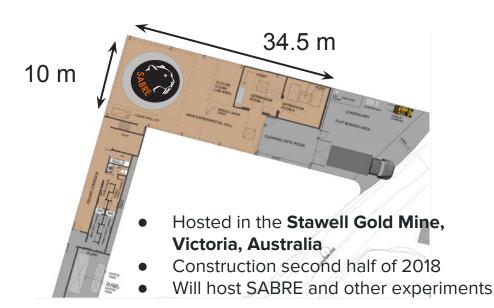

PMTs


Crystal

Isotope	Activity [mBq/PMT]		
	Body	Window	Ceramic plate
$^{40}\mathrm{K}$	< 5.9	< 0.48	6.5
$^{60}\mathrm{Co}$	0.65	< 0.042	< 0.19
$^{238}\mathrm{U}$	< 0.52	<1.8	13
226 Ra	< 0.29	0.040	0.29
$^{232}\mathrm{Th}$	< 0.0098	< 0.037	0.70
$^{228}\mathrm{Th}$	< 0.41	< 0.015	0.13

Active veto system

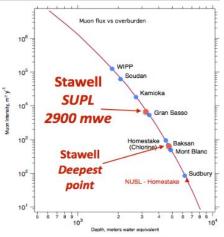
- A liquid scintillator veto (PC+PPO 3g/I) surrounding the NaI detector at 4π
- Veto events with E > 100 keV in the liquid scintillator
- Strongly reduce
 - o external backgrounds
 - o internal backgrounds that release energy also in the liquid scintillator: 40K

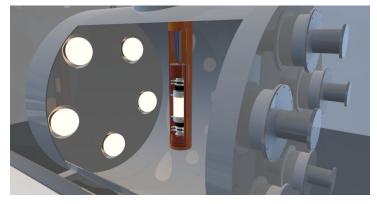


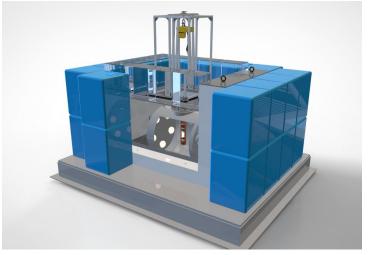
⁴⁰K (11% BR) decays through electron capture to ⁴⁰Ar

- γ 1460 keV
- X-rays, Auger electrons 3 keV

Double location


- Twin experiments:
 - LNGS (Italy)
 - SUPL (Australia)
- Different environmental conditions:
 - Seasonal effects with opposite phase
 - Rock composition and radiopurity
 - Independent radon, temperature, pressure/ control systems and power supply


The SABRE Proof-of-Principle


Goals:

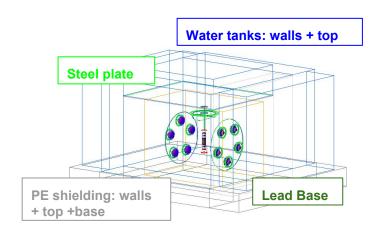
- Test active veto performance
- Fully characterize the intrinsic and cosmogenic backgrounds

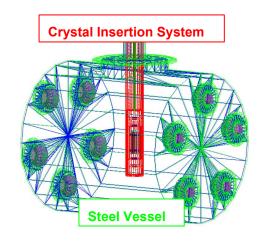
Layout:

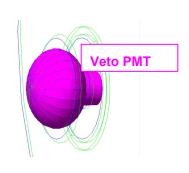
- 1 Nal(Tl) crystal
- Crystal and PMTs will be coupled directly with optical coupling gel and sealed into a highly radiopure copper enclosure
- Active veto:
 - Cylindrical vessel (\varnothing x h) = (1.3 m x 1.5 m)
 - PC+PPO (3g/I) scintillator (mass \approx 2 ton)
 - o 10 Hamamatsu R5912-100 PMTs
- External shielding: combination of lead, polyethylene and water, sealed and filled with nitrogen

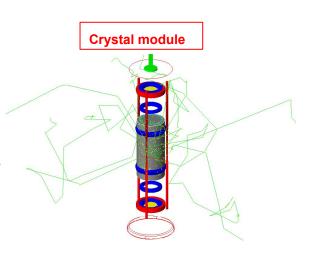
Status of the SABRE Proof-of-Principle @ LNGS

Shielding and vessel mounted in Hall C

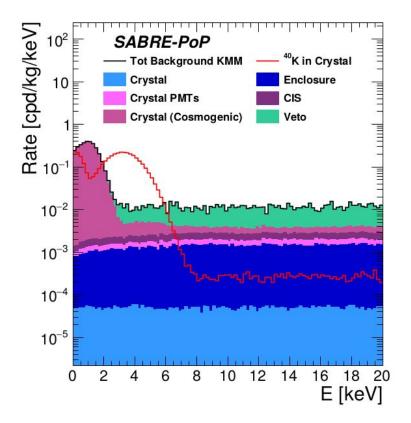



Status of the SABRE Proof-of-Principle @ LNGS


- The veto tank has been cleaned, internally covered with lumirror® and equipped with PMTs
- Crystal and enclosure in Princeton, will be mounted and shipped to LNGS
- Data taking with PoP foreseen in the second half of 2018


Monte Carlo simulation of the background

- GEANT4 based code with detailed geometry implementation
 - Crystal
 - Crystal PMTs: quartz window + body + feedthrough
 - Enclosure: wrapping, copper enclosure and small components inside
 - Crystal Insertion System (CIS): copper tube, steel bar
 - Veto: steel vessel + liquid scintillator + 10 veto PMTs
 - Shielding: water + polyethylene + steel + lead



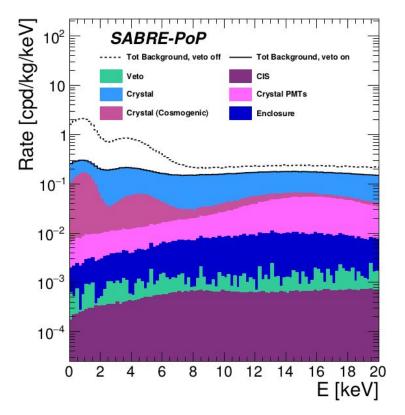
K measurement mode

 Target ⁴⁰K electron capture (3 keV auger e⁻ + 1.46 MeV γ) in the crystal and other processes with large energy deposits in the scintillator

Coincidences Cystal+Scintillator allow to study other intrinsic BKGs that give a energy

release in the scintillator

[1280 < E(Scintillator) < 1640] keV ROI : [2,4] keV 2 months underground


	Rate KMM
	$[\mathrm{cpd/kg/keV}]$
Crystal Cosmogenic	$1.8 \cdot 10^{-2}$
Veto	$6.2 \cdot 10^{-3}$
Enclosure	$1.3 \cdot 10^{-3}$
Crystal PMTs	$1.1 \cdot 10^{-3}$
CIS	$7.7 \cdot 10^{-4}$
Crystal (no ⁴⁰ K)	$5.1 \cdot 10^{-5}$
Total	$2.7 \cdot 10^{-2}$
Crystal ⁴⁰ K	$1.9 \cdot 10^{-1}$

- Largest bkg contribution from ²²Na mostly below threshold of 2 keV
- 10 ppb of K can be directly measured at 1 ppb precision in ~2 months

<u>arXiv:1806.09344</u>

Dark matter measurement mode

- Test the active veto rejection power of the liquid scintillator system and the
- Measure background level after veto in the crystal

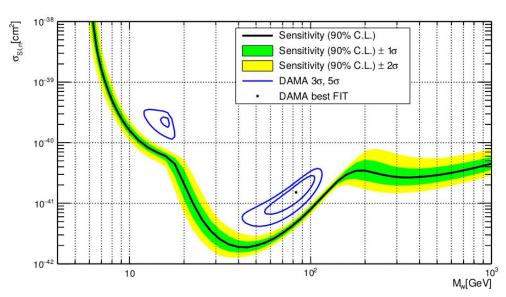
Veto on: E(Scintillator) < 100 keV

ROI: [2,6] keV

6 months underground

	Rate, veto OFF	Rate, veto ON
	$[\mathrm{cpd/kg/keV}]$	$[\mathrm{cpd/kg/keV}]$
Crystal	$3.5 \cdot 10^{-1}$	$1.5 \cdot 10^{-1}$
Crystal Cosmogenic	$3.0 \cdot 10^{-1}$	$3.9 \cdot 10^{-2}$
Crystal PMTs	$4.3 \cdot 10^{-2}$	$3.5 \cdot 10^{-2}$
Enclosure	$9.5 \cdot 10^{-3}$	$3.6 \cdot 10^{-3}$
Veto	$3.0 \cdot 10^{-2}$	$5.7 \cdot 10^{-4}$
CIS	$3.7 \cdot 10^{-3}$	$4.6 \cdot 10^{-4}$
Total	$7.4 \cdot 10^{-1}$	$2.2 \cdot 10^{-1}$

- Veto rejection is ~70%
- Total background 0.22 cpd/kg/keV,
 5 times lower than DAMA background
- Highest contribution from Rb in the crystal, but we used the the upper limit contamination


SABRE expected sensitivity

Assuming:

- 3 years exposure
- 50 kg of NaI(TI) crystals
- average background 0.22 cpd/kg/keV in [2-6] keV region
- Quenching factor for Na: $0.13 < Q_{Na} < 0.21$, for $IQ_{I} = 0.09$

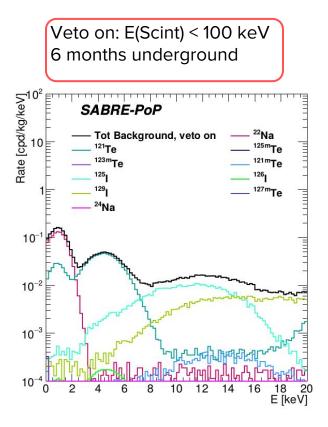
The SABRE full scale can:

- Confirm modulation with amplitude observed by DAMA at 6σ
- Refute it at 5σ
- Exclude spin independent
 WIMP-nuclear scattering as strong as 10⁻⁴² cm²

arXiv:1806.09340

Summary and conclusions

- SABRE can perform an independent high sensitivity verification of the DAMA/LIBRA modulation
- SABRE features:
 - High purity Nal(TI) crystals
 - Low energy sensitivity
 - Active background rejection
 - Twin detectors
- Proof of Principle phase in preparation and expected to run in the second half of 2018
- Background levels evaluated with GEANT4 simulations:
 - 0.027 cpd/kg/keV for KMM (⁴⁰K excluded)
 - 0.22 cpd/kg/keV for DMM
- Full scale experiment can confirm (reject) annual modulation with amplitude observed by DAMA/LIBRA with 3 years of data at 6 (5) sigma.



Backup slides

Crystal cosmogenic background

Cosmogenic activation assumptions:

- ²²Na and ¹²⁶I measured at LNGS on Astro Grade powder
- ²⁴Na and ¹²⁹I measured from DAMA collaboration on their crystals
- other isotopes measured from ANAIS collaboration on their crystals

ROI:	2-6	keV
------	-----	-----

Isotope	Rate, veto OFF	Rate, veto ON
M250	$[\mathrm{cpd/kg/keV}]$	[cpd/kg/keV]
2002000	Cosmogenic	
121 Te	$2.6 \cdot 10^{-1}$	$3.3 \cdot 10^{-2}$
$^{22}\mathrm{Na}$	$3.6 \cdot 10^{-2}$	$2.7 \cdot 10^{-3}$
$^{125}\mathrm{I}$	$1.8 \cdot 10^{-3}$	$1.8 \cdot 10^{-3}$
$^{129}\mathrm{I}$	$3.4 \cdot 10^{-4}$	$3.4 \cdot 10^{-4}$
$^{126}\mathrm{I}$	$2.0 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$
$^{121m}\mathrm{Te}$	$1.3 \cdot 10^{-4}$	$7.0 \cdot 10^{-5}$
$^{123m}{ m Te}$	$7.6 \cdot 10^{-5}$	$5.1 \cdot 10^{-5}$
$^{127m}\mathrm{Te}$	$5.0 \cdot 10^{-5}$	$4.9 \cdot 10^{-5}$
$^{125m}\mathrm{Te}$	$5.3 \cdot 10^{-6}$	$5.1 \cdot 10^{-6}$
$^{24}\mathrm{Na}$	-	-
Tot Cosmogenic	$3.0 \cdot 10^{-1}$	$3.9 \cdot 10^{-2}$
(180 days)		

Radioactivity of materials

Crystal

	Intrinsi	С	
Isotope	Activity [n	nBq/kg]	Ref.
^{40}K	0.31	10 10 E	14
$^{238}\mathrm{U}$	< 1.2 · 1	10-2	14
$^{232}\mathrm{Th}$	< 4.1 · 1	10^{-3}	14
$^{87}\mathrm{Rb}$	< 8.9 · 1	10-2	14
$^{210}\mathrm{Pb}$	< 3.0 · 1	10^{-2}	24
$^{85} m Kr$	< 1.0 · 1		24
	Cosmoger	nic	00
Isotope	Activity [mBq/kg]	Half life [days]	Ref.
^{22}Na	0.80	949	29
^{126}I	4.30	13	29
24 Na	$2.6 \cdot 10^{-4}$	0.625	24
^{129}I	0.95	-	24
$^{121}{ m Te}$	1.27	17	28
^{125}I	7.20	59	28
$^{121m}\mathrm{Te}$	0.89	154	28
$^{123m}\mathrm{Te}$	1.17	119	28
$^{125m}\mathrm{Te}$	0.92	57	28
$^{127m}\mathrm{Te}$	0.37	107	28

[14] M. Antonello, et al., The SABRE project and the SABRE PoParXiv:1806.09340.

[24] R. Bernabei, et al., *The DAMA/LIBRA apparatus*, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 592 (3) (2008) 297 – 315. doi:http://dx.doi.org/10.1016/j.nima.2008.04.082.

[28] J. Amaré, et al., Cosmogenic radionuclide production in NaI(TI) crystals, JCAP 1502 (02) (2015) 046. arXiv:1411.0106, doi:10.1088/1475-7516/2015/02/046.

[29] M. Laubenstein, HPGe screening at LNGS.

arXiv:1806.09344

Crystal PMTs Hamamatsu R11065

Isotope	Activity [mBq/PMT]		
	Body	Window	Ceramic plate
$^{40}\mathrm{K}$	< 5.9	< 0.48	6.5
$^{60}\mathrm{Co}$	0.65	< 0.042	< 0.19
$^{238}\mathrm{U}$	< 0.52	<1.8	13
226 Ra	< 0.29	0.040	0.29
$^{232}\mathrm{Th}$	< 0.0098	< 0.037	0.70
$^{228}\mathrm{Th}$	< 0.41	< 0.015	0.13

E. Aprile, et al., Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment, European Physical Journal C 75 (2015) 546. doi:10.1140/epjc/s10052-015-3657-5.

PFTE reflector foil

Isotope	Activity [mBq/kg]
$^{40}\mathrm{K}$	3.1
$^{238}\mathrm{U}$	0.25
$^{232}\mathrm{Th}$	0.5

PFTE holders inside enclosure

Isotope	Activity [mBq/kg]
$^{40}\mathrm{K}$	< 2.25
$^{238}{ m U}$	< 0.31
$^{232}{ m Th}$	< 0.16
$^{60}\mathrm{Co}$	< 0.11
$^{137}\mathrm{Cs}$	< 0.13

E. Aprile, et al., Material screening and selection for XENON100, Astroparticle Physics 35 (2) (2011) 43 – 49. doi:http://dx.doi.org/10.1016/j.astropartphys.2011.06.001.

Radioactivity of materials

Copper parts: enclosure, CIS

Isotope	Half life [days]	Activity [mBq/kg]
$^{40}\mathrm{K}$		0.7
$^{238}\mathrm{U}$		0.065
$^{232}\mathrm{Th}$		0.002
$^{60}\mathrm{Co}$	1925	0.340
$^{58}\mathrm{Co}$	71	0.798
$^{57}\mathrm{Co}$	272	0.519
$^{56}\mathrm{Co}$	77	0.108
$^{54}{ m Mn}$	312	0.154
$^{46}\mathrm{Sc}$	84	0.027
59 Fe	44	0.047
$^{48}\mathrm{V}$	16	0.039

L. Baudis, et al., Cosmogenic activation of xenon and copper, The European Physical Journal C 75 (10) (2015) 485. doi:10.1140/epjc/s10052-015-3711-3.

Steel vessel

	Activity [mBq/kg]	
Isotope	Lot n.S536	Lot n.T915
	Thickness 3/8"	Thickness 1/4"
$^{40}\mathrm{K}$	0.12	< 0.03
$^{238}\mathrm{U}$	3.7	0.49
$^{232}\mathrm{Th}$	< 0.41	0.082

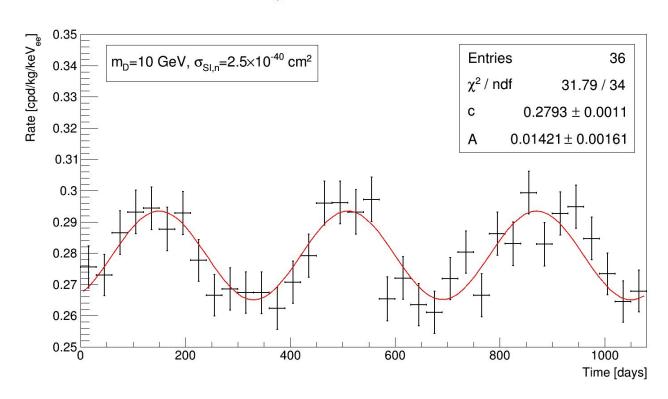
E. Shields, SABRE: A search for dark matter and a test of the DAMA/LIBRA annual-modulation result using thallium-doped sodium-iodide scintillation detectors, Ph.D. Thesis Princeton University.

arXiv:1806.09344

Veto PMTs Hamamatsu R5912

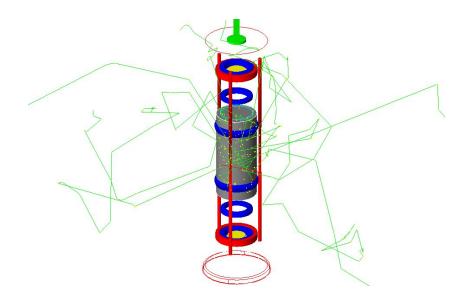
Isotope	Activity [mBq/PMT]
$^{40}\mathrm{K}$	649
$^{238}\mathrm{U}$	883
$^{232}\mathrm{Th}$	110
$^{235}{ m U}$	41

P. Agnes, et al., The veto system of the DarkSide–50 experiment, JINST P03016. doi:https://doi.org/10. 1088/1748-0221/11/03/P03016


Liquid scintillator

Isotope	Activity [mBq/kg]
$^{40}{ m K}$	$3.5 \cdot 10^{-7}$
$^{238}\mathrm{U}$	$< 1.2 \cdot 10^{-6}$
$^{232}\mathrm{Th}$	$< 1.2 \cdot 10^{-6}$
²¹⁰ Pb	$1.7 \cdot 10^{-6}$
$^{210}\mathrm{Bi}$	$1.7 \cdot 10^{-6}$
$^7\mathrm{Be}$	$< 1.2 \cdot 10^{-6}$
$^{14}\mathrm{C}$	$4.1 \cdot 10^{-1}$
$^{39}\mathrm{Ar}$	$3.5 \cdot 10^{-6}$
$^{85}{ m Kr}$	$3.5 \cdot 10^{-7}$

G. Alimonti, et al., The liquid handling systems for the Borexino solar neutrino detector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 609 (1) (2009) 58 – 78. doi:http://dx.doi.org/10.1016/j.nima.2009.07.028.


SABRE expected modulation

$$m_D = 10 \, GeV, \, \sigma_{SI,n} = 2.5 \cdot 10^{-40} \, cm^2$$

Geant 4 details

- GEANT4 v10.2.p03
 - Hadronic physics list: Shielding
 - EM physics list: G4EmStandardPhysics_option4
 - Fluorescence, auger electron emission and particle induced atomic relaxation accounted
 - G4EmExtraPhysics

