

Searches for new resonances coupling to third generation quarks at CMS

Kevin Nash for the CMS Collaboration

Introduction

- Analyses use third generation quarks as a probe for new physics
- Heavy resonance decaying to third generation quarks
 - $Z' \rightarrow t\bar{t}$
 - $W' \rightarrow tb$
- With an intermediate VLQ
 - $Z' \rightarrow tT$
- Leptoquark pair production
 - LQ $\rightarrow \tau t$
 - LQ $\rightarrow \mu t$

Introduction

- Searches generally involve tagging heavy boosted objects (ex. top,W,H) merged into a single jet
- Softdrop mass
 - Decluster until softdrop condition is met
 - Groomed mass variable and subjets identified
- N-subjettiness
 - Identify subjet axes, and extract τ_N variables
 - τ_3/τ_2 "three-prong" like
 - τ_2/τ_1 "two-prong" like
- Subjet b tagging
 - Attempt to b tag softdrop subjets
 - Identify one or two subjets

Softdrop condition

$$\frac{min(p_{\rm T1}, p_{\rm T2})}{p_{\rm T1} + p_{\rm T2}} > z(\Delta R_{12}/R_0)^{\beta}$$

N-subjettiness

$$\tau_{N} = \frac{1}{d} \sum_{i} p_{T_{i}} \min\{\Delta R_{1,i}, \Delta R_{2,i}, ..., \Delta R_{N,i}\}$$

$$Z' \rightarrow t\bar{t}$$

- Search for a heavy Z' resonance decaying to a top quark pair
- Search in multiple channels
 - Two hadronic tops (all hadronic)
 - One hadronic top and one semileptonic top (semileptonic)
 - Two semileptonic tops (dileptonic)
- Consider two signal hypotheses
 - Heavy Z' and RSgluon
- Heavy resonance leads to merged objects
 - Use boosted hadronic top identification
 - Lepton isolation starts to break down

Link: <u>CMS-PAS-B2G-17-017</u>

- Require two top tagged jets
 - τ_3/τ_2 , Softdrop mass, Subjet b tag (0,1, or 2)
- Select on rapidity difference
 - $\Delta R < 1.0, \Delta R > 1.0$
- Estimate QCD background using anti tag and probe
 - Invert Nsubjettiness selection

- Selection
 - One lepton (e or μ)
 - Two jets, one with high p_T
 - Hadronic top tag categories (0 or 1)
 - High p_T^{miss}
 - No lepton isolation cut
- Use BDT selection to separate W+jets
 - 10 inputs
- Reconstruct $t\bar{t}$ system using χ^2

$$\chi^{2} = \left[\frac{M_{\text{lep}} - \overline{M}_{\text{lep}}}{\sigma_{M_{\text{lep}}}}\right]^{2} + \left[\frac{M_{\text{had}} - \overline{M}_{\text{had}}}{\sigma_{M_{\text{had}}}}\right]^{2}$$

- Selection
 - Two opposite sign leptons (e or μ)
 - Two jets, one with high p_T
 - At least one b tag
 - High p_T^{miss}
 - No lepton isolation cut
- Use $\Delta R_{sum} \equiv \Delta R_{j,l1} + \Delta R_{j,l2}$ to categorize events
 - Boosted: ΔR_{sum} < 1
 - Resolved: $1 < \Delta R_{sum} < 2$
 - Background CR: $\Delta R_{sum} > 2$
- Set limits using S_T distribution

$$S_T \equiv \sum_{i=1}^{N_{\text{jet}}} p_{T_i} + \sum_{i=1}^{2} p_{T_i} + \vec{p}_T^{\text{miss}}$$

- Limits set using RSGluon and Z' signal hypotheses
- Limits extended
 - 3.8 TeV for the narrow Z' hypothesis
 - 4.6 TeV for the RSGluon hypothesis

$$W' \rightarrow tb$$

- Search for a heavy W' resonance decaying to a top quark and bottom quark
 - Semileptonic final state
- Set generic limits of left- and right-handed W' couplings

$$\mathcal{L} = \frac{V_{f_i f_j}}{2\sqrt{2}} g_w \bar{f}_i \gamma_\mu \left[a_R^{f_i f_j} (1 + \gamma^5) + a_L^{f_i f_j} (1 - \gamma^5) \right] W'^\mu f_j + \text{h.c.}$$

Link:physletb.2017.12.006

9

$W' \rightarrow tb$

- Selection
 - One lepton (e or μ)
 - Two jets, one with high p_T
 - B tag categories (1,2)
 - High p_T^{miss}
 - No lepton isolation cut
- Use kinematic categorization for limit setting

$W' \rightarrow tb$

- Backgrounds from Monte Carlo with data control regions
 - Investigate dilepton tt
 to check top p_T spectrum
 - Use 0 b tag region to investigate W+jets shape and normalization
- Limits set on W[']_R hypothesis
 - $M_{W_R'} >> M_{v_R}$ -- Exclude $M_{W_R'} < 3.4 \text{ TeV}$
 - ${
 m M_{W_R'}} < {
 m M_{\upsilon_R}}$ -- Exclude ${
 m M_{W_R'}} < 3.6~{
 m TeV}$
- Limits set in a_L, a_R plane
 - Left- and right-handed W' couplings

$Z' \rightarrow tT$

- Search for a heavy Z' resonance decaying to a top and a T VLQ in the lepton+jets channel
 - T decays in to bW,tH,tZ analyzed
 - Use multiple boosted jet categories
 - H_{1b} , H_{2b} , Z, W
- Reconstruct Z' based on presence of a hadronic top tag
 - Event contains hadronic top tag
 - Leptonic top from lepton, MET, and AK4 jet
 - Event does not contain hadronic top tag
 - AK4 jets are assigned to either leptonic or hadronic top
 - Construct χ² to assign AK4 jets

$$\chi^{2} = \left[\frac{M_{\text{lep}} - \overline{M}_{\text{lep}}}{\sigma_{M_{\text{lep}}}}\right]^{2} + \left[\frac{M_{\text{had}} - \overline{M}_{\text{had}}}{\sigma_{M_{\text{had}}}}\right]^{2}$$

Link: CMS-PAS-B2G-17-015

$Z' \rightarrow tT$

35.9 fb⁻¹ (13 TeV)

- Primary backgrounds tt and W+jets
 - Invert boson mass selection to simultaneously constrain
 - W+jets sideband from 0 b jets category
 - tt̄ sideband from ≥1 b jet category
 - Shape taken from simulation

μ channel

$Z' \rightarrow tT$

- Set limits using two benchmark models
 - Extra dimension model
 - Composite model
- best sensitivity for T → tH

 $T \rightarrow bW$ and $T \rightarrow tZ$ also covered by: B2G-16-013 (<u>JHEP 09 (2017) 053</u>) and B2G-17-007 (Phys. Lett. B 781 (2018) 574)

$$LQ \rightarrow \ell t$$

- Searches for third generation scalar leptoquarks
 - Non-zero lepton and baryon numbers
- Decay to third generation quark and lepton
 - top+τ
 - top+μ

Link:CMS-PAS-B2G-16-027,arxiv:1803.02864

$LQ \rightarrow \tau t$

- Selection
 - One lepton (e or μ)
 - Three jets
 - τ tag categories (1 or ≥ 2)
 - $N_{\tau} = 1$
 - Limits set using the hadronic top p_T^{top} variable in bins of S_T
 - $N_{\tau} \geq 2$
 - Counting experiment
- Background estimation
 - Invert τ isolation to extract misidentified τ background
 - Extrapolate to signal region using ratio from MC
 - Prompt τ background from simulation

$$N_{\mathrm{SR}}^{\mathrm{t\bar{t},data}} = \left(N_{\mathrm{CR}}^{\mathrm{data}} - N_{\mathrm{CR}}^{\mathrm{other,MC}}\right) \frac{N_{\mathrm{SR}}^{\mathrm{t\bar{t},MC}}}{N_{\mathrm{CR}}^{\mathrm{t\bar{t},MC}}}$$

16

$LQ \rightarrow \mu t$

- Selection
 - Two oppositely charged muons
 - At least two jets, one b tagged
 - High S_T
 - High M_{μμ}
- Additional lepton categories
 - One additional electron or muon
 - Set limits using $M_{LQ} \equiv \frac{1}{2} (M_{LQ}^{lep} + M_{LQ}^{had})$
 - Reconstruct using χ^2
 - All remaining events $\chi^2 = \left(\frac{M_{\rm t} \overline{M}_{\rm t}}{\sigma_{\rm M}}\right)_{\rm lep}^2 + \left(\frac{M_{\rm t} \overline{M}_{\rm t}}{\sigma_{\rm M}}\right)_{\rm had}^2 + \left(\frac{\Delta M_{\rm LQ}^{\rm rel} \overline{\Delta M}_{\rm LQ}^{\rm rel}}{\sigma_{\Delta M}}\right)^2$
 - Set limits using S_T
 - Background estimate from data
 - Define zero muon control region
 - Extrapolate from control region using MC ratio as a function of S_T

$LQ \rightarrow \ell t$

Limit combination

CMS

 $LQ \to \tau t$

35.9 fb⁻¹ (13 TeV)

tt̄, & W+jets Single t

Combined limits

Summary

- Exciting new results from CMS
 - Heavy bosons to 3rd generation quarks
 - $Z' \rightarrow t\bar{t}, W' \rightarrow tb$
 - Including an internal VLQ
 - $Z' \rightarrow tT$
 - Leptoquark pair production
 - LQ \rightarrow τt , LQ $\rightarrow \mu t$
 - New methods push sensitivity beyond expected improvement
- Looking forward to new results using 2017 and 2018 data

Backup