

Performance of missing transverse momentum reconstruction at the CMS detector in 13 TeV data

Leonora Vesterbacka on behalf of the CMS collaboration

ICHEP2018 SEOUL XXXIX INTERNATIONAL CONFERENCE

nergy PHYSICS

1, 2018 COEX, SEOUL

ETHzürich

introduction: p_T^{miss} calibration

improve p_T^{miss} performance by propagating the JECs to the p_T^{miss} : Type 1 corrections

- correct jets if
 - $p_T > 15 \text{ GeV}$
 - \odot EM fraction < 0.9
 - on muon overlapping
- Type 1 corrected p_T^{miss} is used throughout this talk

uncertainties :

- jet energy scale: ~ 3% (1-12%) inside (outside) tracker acceptance *
- unclustered energy: depends on the class of the objects
- muons, electrons, photons and taus scale: negligible compared to jets and unclustered energy.

the uncertainties are represented by a grey band and contain jet energy scale/resolution, unclustered energy up/down variations and MC statistics *Jet energy scale and resolution performance

Type 1
$$p_{\mathrm{T}}^{\mathrm{miss}} = p_{\mathrm{T}}^{\mathrm{miss}} - \sum_{\mathrm{jets}} (\vec{p}_{\mathrm{T,jet}}^{\mathrm{corr}} - \vec{p}_{\mathrm{T,jet}}).$$

ETHzürich anomalous pr^{miss}

ETHzürich

PF p_T^{miss} performance in 2016 data

ETHzürich Leonora Vesterbacka, MET performance in CMS, July 6th 2018, ICHEP Seoul PF performance in events with no intrinsic p^{miss}

ETHzürich Leonora Vesterbacka, MET performance in CMS, July 6th 2018, ICHEP Seoul PF performance in events with no intrinsic pr^{miss}

 u_{\perp}

-150 -100

10³

ETHzürich Leonora Vesterbacka, MET performance in CMS, July 6th 2018, ICHEP Seoul PF performance in events with no intrinsic p^{miss}

ETHzürich Leonora Vesterbacka, MET performance in CMS, July 6th 2018, ICHEP Seoul PF performance in events with no intrinsic pr^{miss}

ETHzürich Leonora Vesterbacka, MET performance in CMS, July 6th 2018, ICHEP Seoul PF performance in events with no intrinsic pr^{miss}

resolution as a function of number of vertices:

						40 [Jec] 35	
-	Process	$\sigma (data)[CeV]$	$\sigma (MC)[GeV]$	σ _{DV} (data)[CeV]	$R = \sigma_{\rm DM}({\rm data})/\sigma_{\rm DM}({\rm MC})$	_ _	
:	1100055			mponont	$n_r = 0 \text{PU}(\text{data}) / 0 \text{PU}(\text{MC})$	- b 25	; -
-	$Z \rightarrow \mu \mu$	13.9 ± 0.07	$\frac{u_{ }}{11.9 \pm 1.53}$	$\frac{382 \pm 0.01}{382 \pm 0.01}$	0.95 ± 0.04	_	
	$Z \rightarrow ee$	10.5 ± 0.01 14.6 ± 0.09	11.0 ± 1.00 12.0 ± 1.09	3.80 ± 0.02	$0.95 \pm 0.01 \\ 0.95 \pm 0.03$	20	
	$\gamma + \mathrm{jets}$	12.2 ± 0.10	10.2 ± 1.98	3.97 ± 0.02	0.97 ± 0.05	15	E.
-					Έ		
-	$Z \rightarrow \mu \mu$	10.3 ± 0.08	8.58 ± 2.2	3.87 ± 0.01	0.97 ± 0.04	1(⊳⊨
	$Z \rightarrow ee$	10.7 ± 0.10	8.71 ± 1.8	3.89 ± 0.01	0.96 ± 0.04		
	$\gamma + jets$	9.04 ± 0.11	6.93 ± 2.7	3.94 ± 0.01	0.97 ± 0.04	5	5 <u> </u>
-							
		f(N)	$-\sigma_{\rm PU}^2$	Data / MC 1.2 1.2 0.0 0.0 0.7 0.7 0.7 0.7 0.7 0.7			

- $\sigma_{\rm c}$: resolution of hard scattering
- σ_{PU} : resolution degrades with 4 GeV per additional PU interaction
- 0.7 coefficient: accounts for the 2016 vertex reconstruction efficiency

ETHzürich Leonora Vesterbacka, MET performance in CMS, July 6th 2018, ICHEP Seoul PF performance in events with no intrinsic p^{miss}

PUPPI p_T^{miss} performance in 2016 data

ETHzürich

ETHzürich

ETHzürich Leonora Vesterbacka, MET performance in CMS, July 6th 2018, ICHEP Seoul PUPPI performance in events with no intrinsic p_T^{miss}

ETHzürich PUPPI performance in events with no intrinsic p_T^{miss}

resolution as a function of number of vertices:

ETHzürich

p_T^{miss} significance in 2016 data

ETHzürich p_T^{miss} significance

p_T^{miss} significance

- quantifies the degree of compatibility of the p_T^{miss} with 0
- the significance is defined as a log-likelihood ratio

ETHzürich

summary

performance of missing transverse momentum at the CMS detector in 13 TeV data

- two algorithms used in CMS studied: **PF and Puppi p**T^{miss}
 - the response and resolution of both algorithms is studied in $Z \rightarrow \ell \ell / \gamma + jets$ events. \bigcirc
 - good agreement is found between the different samples and between data and simulation. \bigcirc
 - Puppi p_T^{miss} is more stable than PF p_T^{miss} vs pileup 0

backup

ETHzürich datasets

di-jet and mono-jet samples

- for p_T^{miss} filter studies
- collected using triggers on both p_{T,trig}^{miss} and H_{T,trig}^{miss}
- di-lepton and single photon samples
- \circ used for PF and Puppi p_T^{miss} performance studies in fake p_T^{miss} events
- collected using triggers on leading and subleading muon/electron p_T , or using a set of isolated single photon triggers

single lepton samples

- \circ used for PF and Puppi p_T^{miss} performance studies in genuine p_T^{miss} events
- collected using triggers on p_T and isolation on the electron/muon

03Feb2017 re-reco of 2016 data

- JEC Summer16_23Sep2016V4
- MC reweighted to match data in number of vertices

ETHzürich selections

- muons: medium ID, $p_T > 25$, 20 GeV
- electrons: tight ID, p_T 25, 20 GeV
- compatible with Z boson mass ($80 < m_{\parallel} < 100 \text{ GeV}$)
- additional leptons ($p_T > 20$ GeV) vetoed

ETHzürich selections

- single muons: tight ID, $p_T > 25$ GeV
- single electrons: tight ID, $p_T > 26$ GeV

Projections of the hadronic recoil

- PF u_{ll}+q_T (top row)
- PF u₁ (bottom row)
- good data-simulation agreement

51	Hzü	rich	Leonora	Vesterbacka, ME	Tperform			
oer	form	nanc	e of I	PF p ^{mis}	s al			
resolu	ition as a	a functio	on of num	nber of vertice	?S:			
FWH	HM vs. RN	/IS: simila	ar perform	nance	40			
		R	MS P	APER				
Process	$\sigma_c(\text{data})[\text{GeV}]$	$\sigma_c(MC)[GeV]$	$\sigma_{\rm PU}({\rm data})[{ m GeV}]$	$R_r = \sigma_{\rm PU}(\text{data}) / \sigma_{\rm PU}(\text{MC})$	 25 و			
7	13.0 ± 0.07	$\frac{u_{ } co}{11.0 + 1.53}$	$\frac{1}{3.82 \pm 0.01}$	0.95 ± 0.04				
$Z \rightarrow \mu\mu$ $Z \rightarrow ee$	13.9 ± 0.07 14.6 ± 0.09	11.9 ± 1.09 12.0 ± 1.09	3.82 ± 0.01 3.80 ± 0.02	0.95 ± 0.04 0.95 ± 0.03	20			
γ +jets	12.2 ± 0.10	10.2 ± 1.98	3.97 ± 0.02	0.97 ± 0.05	15			
	u_{\perp} component							
$Z \rightarrow \mu \mu$	10.3 ± 0.08	8.58 ± 2.2	3.87 ± 0.01	0.97 ± 0.04	10 -			
$Z \rightarrow ee$	10.7 ± 0.10	8.71 ± 1.8	3.89 ± 0.01	0.96 ± 0.04	Ē_			
γ +jets	9.04 ± 0.11	6.93 ± 2.7	3.94 ± 0.01	0.97 ± 0.04	5			
		M	O 1.4 M 1.3 M					
Process	$\sigma_c(\text{data})[\text{GeV}]$	$\sigma_c(MC)[GeV]$	$\sigma_{\rm PU}({\rm data})[{\rm GeV}]$	$R_r = \sigma_{\rm PU}(\text{data}) / \sigma_{\rm PU}(\text{MC})$				
		u co	omponent					
$Z \rightarrow \mu \mu$	11.9 ± 0.40	10.2 ± 3.26	4.26 ± 0.03	0.97 ± 0.08	0.7			
$Z \rightarrow ee$	12.6 ± 0.50	11.3 ± 3.26	4.23 ± 0.05	0.97 ± 0.07	0.6 5			
$\gamma + jets$	12.1 ± 0.08	9.61 ± 3.04	4.09 ± 0.01	0.97 ± 0.06	_			
	u_{\perp} component							
$Z \rightarrow \mu \mu$	8.51 ± 0.32	7.3 ± 2.57	4.23 ± 0.02	0.98 ± 0.05				
$Z \rightarrow ee$	9.03 ± 0.43	5.9 ± 7.42	4.21 ± 0.03	0.96 ± 0.09				
$\gamma + \text{jets}$	9.22 ± 0.08	0.3 ± 4.02	4.02 ± 0.01	0.90 ± 0.00	_			

gorithm

ETHzürich -miss filters

anomalous p_T^{miss} arise from many sources

- Beam-halo 0
 - Real showers with non collision origins
 - Identified by matching hits in CSC and deposits in the calorimeters \bigcirc
- Noise in calorimeters
 - Noise in the hybrid photodiode and readout box of the HCAL \bigcirc
 - Direct particle interactions with the light guides and photomultipliers tubes of the forward calorimeter ECAL super crystals producing anomalous pulses
 - \bigcirc
 - absence of crystal level information in few ECAL towers
- Dead parts in the detector
- Object misreconstruction
 - In 2016, high p_T tracks misreconstructed as PF muons

Strategies to reject these events: cleaning at reconstruction level and filters at analysis level

- primary vertex filter
- beam halo filter
- HBHE noise filter
- HBHEiso noise filter
- ECAL TP filter
- ee badSC noise filter
- bad muon filter
- bad charged hadron filter
- <u>twiki</u>

How to get the weight fac for a particle *i* with nearby particles *j*

1. define a local metric, **a**, that differs between pileup (PU) and leading vertex (LV)

2. using tracking information, define unique distributions of **a** for PU and LV

3. for the neutrals, ask "how PU-like is a for this particle?", compute a weight for how LV-like it is

4. reweight the four-vector of the particle by this weight

$$\operatorname{ctor} \operatorname{for} \mathbf{G}_{\mathsf{i}} = \log \left[\sum_{j \in \operatorname{Ch}, \operatorname{LV}} \frac{p_{T,j}}{\Delta R_{ij}} \Theta(R_0 - \Delta R_{ij}) \right]$$

ETHzürich p_T^{miss} significance

p_T^{miss} significance

- quantifies the degree of compatibility of the p_T^{miss} with 0
- the significance is defined as a log-likelihood ratio
- a high value of S is an indication that the
 - \circ p_T^{miss} observed in the event is not well explained by resolution smearing alone
 - suggesting that the event may contain unseen objects such as neutrinos or more exotic weakly interacting particles.
- to a good approximation, $\mathcal{L}(\vec{\epsilon})$ has the form of a Gaussian distribution
 - → significance can be expressed in terms of a covariance matrix
 - computed using all clustered objects and unclustered energy
 - two methods used to estimate the covariance matrix for the unclustered energy

Leonora Vesterbacka, JME-17-001 Approval, June 21st 201

true p_T^{miss} observed p_T^{miss} $S = 2 \ln \left(\frac{\mathcal{L}(\vec{\varepsilon} = \sum \vec{\varepsilon_i})}{\mathcal{L}(\vec{\varepsilon} = 0)} \right)$ null hypothesis: true $p_T^{miss} = 0$

$$\mathcal{S} = \left(\sum_{i} \vec{\varepsilon}_{i}\right)^{\mathrm{T}} \mathbf{V}^{-1} \left(\sum_{i} \vec{\varepsilon}_{i}\right)^{\mathrm$$

ETHzürich p_T^{miss} significance

standard technique

- assuming resolution of unclustered PF candidates is isotropic in transverse plane jackknife technique
- does not assume an isotropic covariance matrix including off-diagonal elements
- calculated using "delete-1" technique
- both techniques compared to p_T^{miss}
- background: processes with no intrinsic pr^{miss}
- signal: processes with intrinsic p_T^{miss}
- similar performance
- improvement with respect to regular p^{miss}

single electron di-muon MC (13TeV) MC (13TeV) PAPER PAPER CMS Simulation CMS Simulation efficien Significance (Jackknife) better better 0.5 0.5 0.4 0.4 0.3 0.2 0. 0.1 0.1 0.01 0.1 0.01 Background efficiency Background efficiency

ETHzürich p_T^{miss} significance in $Z \rightarrow II$

- in $Z \rightarrow II$ events, with no jets or ≥ 1 jets

ETHzürich p_T^{miss} significance in $W \rightarrow Iv$

- using standard covariance matrix estimation
- in W→lv events, with no jets or \geq 1 jets

