Performance of missing transverse momentum reconstruction at the CMS detector in 13 TeV data

Leonora Vesterbacka on behalf of the CMS collaboration
introduction: p_T^{miss}

neutrinos and other weakly interacting particles leave no signal in the detector

- momentum imbalance in the transverse plane
- crucial in SM, Higgs and BSM physics

\[
\begin{align*}
P_T^{\text{miss}} &= \begin{cases}
 \text{PF} & - \sum_{i \in \text{PF}} p_T^i \\
 \text{PF + Puppi} & - \sum_{i \in \text{PF}} w^i p_T^i
\end{cases}
\end{align*}
\]

Particle Flow p_T^{miss} (PF):
- used in majority of CMS analyses

PUPPI p_T^{miss}:
- developed to provide a p_T^{miss} calculation that is robust against pileup

all results presented are from JME-17-001
introduction: p_T^{miss} calibration

improve p_T^{miss} performance by propagating the JECs to the p_T^{miss}: Type 1 corrections

- correct jets if
 - $p_T > 15$ GeV
 - EM fraction < 0.9
 - no muon overlapping
- Type 1 corrected p_T^{miss} is used throughout this talk

$$\text{Type 1 } p_T^{\text{miss}} = p_T^{\text{miss}} - \sum_{\text{jets}} (\vec{p}_{T,\text{jet}} - \vec{p}_{T,\text{jet}}).$$

uncertainties:

- jet energy scale: $\sim 3\%$ (1-12\%) inside (outside) tracker acceptance *
- unclustered energy: depends on the class of the objects
- muons, electrons, photons and taus scale: negligible compared to jets and unclustered energy.

the uncertainties are represented by a grey band and contain jet energy scale/resolution, unclustered energy up/down variations and MC statistics

*Jet energy scale and resolution performance
anomalous p_T^{miss}

event cleaning algorithms and p_T^{miss} filters

- p_T^{miss} distribution in di-jet events
- leading jet ϕ in mono-jet events
- cleaning and jet-id applied

CMS Experiment at LHC, CERN
Data recorded: Thu May 12 03:24:00 2016 CEST
Run/Event: 273158 / 10369617920
Lumi section: 725
PF p_T^{miss} performance in 2016 data
PF performance in events with no intrinsic p_T^{miss}

$Z \to \ell\ell/\gamma + \text{jets}$ events used to study the detector response
PF performance in events with no intrinsic p_T^{miss}

$Z\rightarrow \ell\ell/\gamma + \text{jets}$ events used to study the detector response

$$\vec{q}_T + \vec{u}_T + \vec{E}_T = 0$$

Parallel component $u_\parallel + q_T$

Perpendicular component u_\perp

Data / MC
Z→ℓℓ/γ+jets events used to study the detector response

PF performance in events with no intrinsic p_{T}^{miss}

response:
−<u_||> / <q_T>

parallel component u_|| + q_T
perpendicular component u_⊥
PF performance in events with no intrinsic p_T^{miss}

$Z\rightarrow\ell\ell/\gamma+\text{jets}$ events used to study the detector response

- **Resolution:** RMS of $u_\parallel + q_T$

- Parallel component $u_\parallel + q_T$
- Perpendicular component u_\perp

![Graphs showing $Z\rightarrow\ell\ell/\gamma+\text{jets}$ events used to study the detector response.](image-url)
PF performance in events with no intrinsic p_T^{miss}

$Z\rightarrow\ell\ell/\gamma+\text{jets}$ events used to study the detector response

Resolution:
RMS of u_\perp

- Parallel component $u_\parallel + q_T$
- Perpendicular component u_\perp

![Graphs showing resolution and parallel/perpendicular components](image-url)
PF performance in events with no intrinsic p_T^{miss}

response: $-<u_\parallel>/<q_T>$

resolution as a function of q_T
PF performance in events with no intrinsic p_T^{miss}

resolution as a function of number of vertices:

$$f(N_{\text{vtx}}) = \sqrt{\sigma_c^2 + \frac{N_{\text{vtx}}}{0.7} \sigma_{\text{PU}}^2}$$

- σ_c: resolution of hard scattering
- σ_{PU}: resolution degrades with 4 GeV per additional PU interaction
- 0.7 coefficient: accounts for the 2016 vertex reconstruction efficiency
PF performance in events with no intrinsic p_T^{miss} resolution as a function of $\sum E_T$:
PUPPI p_T^{miss} performance in 2016 data
PUPPI algorithm

- A typical event. Particle Flow algorithm can provide (within tracker volume) the following candidates:

 - PU track
 - Good track
 - PU neutral
 - Good neutral
PUPPI algorithm

1. tracks can point to PU vertices, only keep charged tracks that come from the primary vertex
PUPPI algorithm

2. draw a cone around each neutral PF candidate
PUPPI algorithm

3. remove 0 weight contributions

$w(a_{PU}) \times \Box = \Box$

PU track
Good track
PU neutral
Good neutral

1407.6013
PUPPI algorithm

1. 4. reweight neutrals

$w(\alpha_1) \times \text{PU track} = \text{Good track}$

$w(\alpha_2) \times \text{PU track} = \text{Good track}$

1407.6013
PUPPI algorithm

1. 5. reinterpret the event
PUPPI performance in events with no intrinsic p_T^{miss}

$Z \rightarrow \ell\ell/\gamma+\text{jets}$ events used to study the detector response

$$ p_T^{\text{miss}} = - \sum_{i \in \text{PF}} p_T^{i} - \sum_{i \in \text{PF}} w^i p_T^{i} $$

<table>
<thead>
<tr>
<th>Process</th>
<th>c(data)[GeV]</th>
<th>c(MC)[GeV]</th>
<th>PU(data)[GeV]</th>
<th>$R_{PU} = PU$(data) / PU(MC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \rightarrow \mu\mu$</td>
<td>17.9 ± 0.98 16.3 ± 1.31 1.75 ± 0.42 0.78 ± 0.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z \rightarrow ee$</td>
<td>17.9 ± 1.25 16.7 ± 1.02 1.82 ± 0.52 0.82 ± 0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z \rightarrow \mu\mu$</td>
<td>12.6 ± 0.56 13.0 ± 0.87 1.95 ± 0.16 0.98 ± 0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z \rightarrow ee$</td>
<td>12.7 ± 0.74 13.1 ± 1.01 1.97 ± 0.21 0.98 ± 0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PUPPI performance in events with no intrinsic p_T^{miss} resolution as a function of number of vertices:

PF p_T^{miss}

<table>
<thead>
<tr>
<th>Process</th>
<th>σ_c(data)[GeV]</th>
<th>σ_c(MC)[GeV]</th>
<th>σ_{PU}(data)[GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z\rightarrow \mu\mu$</td>
<td>13.9 ± 0.07</td>
<td>11.9 ± 1.53</td>
<td>3.82 ± 0.01</td>
</tr>
<tr>
<td>$Z\rightarrow ee$</td>
<td>14.6 ± 0.09</td>
<td>12.0 ± 1.09</td>
<td>3.80 ± 0.02</td>
</tr>
<tr>
<td>γ+jets</td>
<td>12.2 ± 0.10</td>
<td>10.2 ± 1.98</td>
<td>3.97 ± 0.02</td>
</tr>
</tbody>
</table>

PUPPI p_T^{miss}

<table>
<thead>
<tr>
<th>Process</th>
<th>σ_c(data)[GeV]</th>
<th>σ_c(MC)[GeV]</th>
<th>σ_{PU}(data)[GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z\rightarrow \mu\mu$</td>
<td>18.9 ± 0.05</td>
<td>17.5 ± 0.74</td>
<td>1.93 ± 0.02</td>
</tr>
<tr>
<td>$Z\rightarrow ee$</td>
<td>18.9 ± 0.06</td>
<td>17.4 ± 0.79</td>
<td>1.94 ± 0.02</td>
</tr>
</tbody>
</table>

MET performance in CMS, July 6th 2018, ICHEP Seoul

Leonora Vesterbacka
performance of PF and Puppi in genuine p_T^{miss} events

$$M_T = \sqrt{2p_T^{miss}p_T^{lepton}(1 - \cos\Delta\phi)}$$

Process

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z\rightarrow\mu\mu$</td>
<td>1.41 ± 0.28</td>
<td>0.77 ± 2.42</td>
<td>0.01 ± 0.10</td>
<td>1.00 ± 0.05</td>
</tr>
<tr>
<td>$Z\rightarrow\mu\mu$</td>
<td>3.53 ± 0.20</td>
<td>0.37 ± 2.55</td>
<td>0.01 ± 0.09</td>
<td>1.03 ± 0.06</td>
</tr>
<tr>
<td>$Z\rightarrow\mu\mu$</td>
<td>1.67 ± 0.05</td>
<td>1.08 ± 1.89</td>
<td>0.01 ± 0.01</td>
<td>1.02 ± 0.03</td>
</tr>
<tr>
<td>$Z\rightarrow\mu\mu$</td>
<td>-2.29 ± 0.21</td>
<td>-2.05 ± 2.57</td>
<td>0.01 ± 0.11</td>
<td>1.01 ± 0.05</td>
</tr>
<tr>
<td>$Z\rightarrow\mu\mu$</td>
<td>-2.36 ± 0.26</td>
<td>-2.03 ± 2.71</td>
<td>0.01 ± 0.11</td>
<td>1.01 ± 0.05</td>
</tr>
<tr>
<td>$Z\rightarrow\mu\mu$</td>
<td>-1.19 ± 0.05</td>
<td>-1.32 ± 2.52</td>
<td>0.01 ± 0.10</td>
<td>1.02 ± 0.06</td>
</tr>
</tbody>
</table>

Process

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z\rightarrow\mu\mu$</td>
<td>11.9 ± 0.40</td>
<td>10.2 ± 3.26</td>
<td>0.97 ± 0.03</td>
<td>0.97 ± 0.06</td>
</tr>
<tr>
<td>$Z\rightarrow\mu\mu$</td>
<td>12.6 ± 0.50</td>
<td>11.3 ± 3.26</td>
<td>0.97 ± 0.05</td>
<td>0.97 ± 0.07</td>
</tr>
<tr>
<td>$Z\rightarrow\mu\mu$</td>
<td>12.1 ± 0.08</td>
<td>9.61 ± 3.04</td>
<td>0.97 ± 0.01</td>
<td>0.97 ± 0.06</td>
</tr>
<tr>
<td>$Z\rightarrow\mu\mu$</td>
<td>8.51 ± 0.32</td>
<td>7.3 ± 2.57</td>
<td>0.98 ± 0.02</td>
<td>0.98 ± 0.05</td>
</tr>
<tr>
<td>$Z\rightarrow\mu\mu$</td>
<td>9.03 ± 0.43</td>
<td>5.9 ± 7.42</td>
<td>0.96 ± 0.03</td>
<td>0.96 ± 0.10</td>
</tr>
<tr>
<td>$Z\rightarrow\mu\mu$</td>
<td>9.22 ± 0.08</td>
<td>6.5 ± 4.62</td>
<td>0.96 ± 0.01</td>
<td>0.96 ± 0.06</td>
</tr>
</tbody>
</table>
p_T^{miss} significance in 2016 data
p_T^{miss} significance

- quantifies the degree of compatibility of the p_T^{miss} with 0
- the significance is defined as a log-likelihood ratio

\[
S = 2 \ln \left(\frac{\mathcal{L}(\bar{\epsilon}' = \sum \bar{\epsilon}_i)}{\mathcal{L}(\bar{\epsilon}' = 0)} \right)
\]

null hypothesis: true $p_T^{\text{miss}} = 0$
performance of p_T^{miss} significance in $Z\rightarrow \mu\mu/W\rightarrow \mu\nu$ and no jets events

- χ^2 with 2 degrees of freedom follow the distribution with no genuine p_T^{miss}
performance of missing transverse momentum at the CMS detector in 13 TeV data

- two algorithms used in CMS studied: PF and Puppi p_T^{miss}
 - the response and resolution of both algorithms is studied in $Z\rightarrow\ell\ell/\gamma+jets$ events.
 - good agreement is found between the different samples and between data and simulation.
 - Puppi p_T^{miss} is more stable than PF p_T^{miss} vs pileup
datasets

<table>
<thead>
<tr>
<th>di-jet and mono-jet samples</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>for p_T^{miss} filter studies</td>
<td></td>
</tr>
<tr>
<td>collected using triggers on both $p_{T,\text{trig}}^{\text{miss}}$ and $H_{T,\text{trig}}^{\text{miss}}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>di-lepton and single photon samples</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>used for PF and Puppi p_T^{miss} performance studies in fake p_T^{miss} events</td>
<td></td>
</tr>
<tr>
<td>collected using triggers on leading and subleading muon/electron p_T, or using a set of isolated single photon triggers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>single lepton samples</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>used for PF and Puppi p_T^{miss} performance studies in genuine p_T^{miss} events</td>
<td></td>
</tr>
<tr>
<td>collected using triggers on p_T and isolation on the electron/muon</td>
<td></td>
</tr>
</tbody>
</table>

03Feb2017 re-reco of 2016 data

<table>
<thead>
<tr>
<th>JEC Summer16_23Sep2016V4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MC reweighted to match data in number of vertices</td>
<td></td>
</tr>
</tbody>
</table>
$Z \rightarrow \mu\mu$ for fake p_T^{miss} studies
- muons: medium ID, $p_T > 25, 20$ GeV
- electrons: tight ID, $p_T > 25, 20$ GeV
- compatible with Z boson mass ($80 < m_{ll} < 100$ GeV)
- additional leptons ($p_T > 20$ GeV) vetoed

$Z \rightarrow ee$ for fake p_T^{miss} studies
- photons: tight ID, $p_T > 50$ GeV
- at least 1 AK4 jet with $p_T > 40$ GeV
- leptons ($p_T > 20$ GeV) vetoed

selections

- $Z \rightarrow \mu\mu$
- $Z \rightarrow ee$
- $\gamma + \text{jets}$

Plots

- Plots showing $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$
- Plot showing $\gamma + \text{jets}$

Invisible Mass Peaks

- Invisible mass peaks for $Z \rightarrow ll$ and $\gamma + \text{jets}$

CMS Preliminary

- Data, Top quark, Diboson, $Z \rightarrow \mu\mu$, $Z \rightarrow ee$, Uncertainty

35.9 fb^{-1} (13 TeV)

- Plot scale: Events / GeV

q_T [GeV]

- q_T range: 0 to 450 GeV

Data/MC

- Data/MC ratio: 0.5 to 2.0

Legends

- Data, Top quark, Diboson, $Z \rightarrow \mu\mu$, $Z \rightarrow ee$, Uncertainty, $V\gamma$+top quark, QCD multijet, $\gamma + \text{jets}$, Uncertainty

Graphs

- Graphs showing event distributions for $Z \rightarrow \mu\mu$, $Z \rightarrow ee$, and $\gamma + \text{jets}$
Leonora Vesterbacka, MET performance in CMS, July 6th 2018, ICHEP Seoul

selections

- **$W \rightarrow l\nu$ for genuine p_T^{miss} studies**
 - single muons: tight ID, $p_T > 25$ GeV
 - single electrons: tight ID, $p_T > 26$ GeV
 - events with b-tagged jets or additional leptons ($p_T > 10$ GeV) rejected

- **mono-jet for p_T^{miss} filter studies**
 - leading AK4 jet $p_T > 100$ GeV
 - $p_T^{\text{miss}} > 250$ GeV
 - veto events with
 - electrons/muons with $p_T > 10$ GeV
 - taus with $p_T > 18$ GeV
 - photon with $p_T > 15$ GeV
 - b-tagged jet with $p_T > 20$ GeV

- **di-jet for p_T^{miss} filter studies**
 - leading AK4 jet $p_T > 500$ GeV
 - trailing AK4 jet $p_T > 200$ GeV
 - $p_T^{\text{miss}} > 250$ GeV
 - same veto as mono-jet selection
Projections of the hadronic recoil
- PF $u_l + q_T$ (top row)
- PF u_\perp (bottom row)
- good data-simulation agreement

Performance of PF p_T^{miss} algorithm
resolution as a function of number of vertices:

○ FWHM vs. RMS: similar performance

<table>
<thead>
<tr>
<th>Process</th>
<th>σ_r(data)[GeV]</th>
<th>σ_r(MC)[GeV]</th>
<th>σ_{PF}(data)[GeV]</th>
<th>σ_{PF}(MC)[GeV]</th>
<th>$R_{e} = \sigma_{PF}$(data)/σ_{PF}(MC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z\rightarrow \mu\mu$</td>
<td>13.9 ± 0.07</td>
<td>11.9 ± 1.53</td>
<td>3.82 ± 0.01</td>
<td>0.95 ± 0.04</td>
<td></td>
</tr>
<tr>
<td>$Z\rightarrow ee$</td>
<td>14.6 ± 0.09</td>
<td>12.0 ± 1.09</td>
<td>3.80 ± 0.02</td>
<td>0.95 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>γ+jets</td>
<td>12.2 ± 0.10</td>
<td>10.2 ± 1.98</td>
<td>3.97 ± 0.02</td>
<td>0.97 ± 0.05</td>
<td></td>
</tr>
</tbody>
</table>

Voigtian FWHM

<table>
<thead>
<tr>
<th>Process</th>
<th>σ_r(data)[GeV]</th>
<th>σ_r(MC)[GeV]</th>
<th>σ_{PF}(data)[GeV]</th>
<th>σ_{PF}(MC)[GeV]</th>
<th>$R_{e} = \sigma_{PF}$(data)/σ_{PF}(MC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z\rightarrow \mu\mu$</td>
<td>11.9 ± 0.40</td>
<td>10.2 ± 3.26</td>
<td>4.26 ± 0.03</td>
<td>0.97 ± 0.08</td>
<td></td>
</tr>
<tr>
<td>$Z\rightarrow ee$</td>
<td>12.6 ± 0.50</td>
<td>11.3 ± 3.26</td>
<td>4.23 ± 0.05</td>
<td>0.97 ± 0.07</td>
<td></td>
</tr>
<tr>
<td>γ+jets</td>
<td>12.1 ± 0.08</td>
<td>9.61 ± 3.04</td>
<td>4.09 ± 0.01</td>
<td>0.97 ± 0.06</td>
<td></td>
</tr>
</tbody>
</table>

 Leonora Vesterbacka, MET performance in CMS, July 6th 2018, ICHEP Seoul
Robustness against pileup evaluated

- di-muon
- single electron

p_T^{miss} significance

<table>
<thead>
<tr>
<th>Number of vertices</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Data (μμ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Number of vertices

- 35.9 fb⁻¹ (13 TeV)

Significance

- CMS

- Simulation
- Data (μμ)

Number of vertices

- 35.9 fb⁻¹ (13 TeV)

Significance

- CMS

- Simulation
- Data (e)
anomalous p_T^{miss} arise from many sources

- Beam-halo
 - Real showers with non collision origins
 - Identified by matching hits in CSC and deposits in the calorimeters
- Noise in calorimeters
 - Noise in the hybrid photodiode and readout box of the HCAL
 - Direct particle interactions with the light guides and photomultipliers tubes of the forward calorimeter
 - ECAL super crystals producing anomalous pulses
 - Absence of crystal level information in few ECAL towers
- Dead parts in the detector
- Object misreconstruction
 - In 2016, high p_T tracks misreconstructed as PF muons

Strategies to reject these events: cleaning at reconstruction level and filters at analysis level

- primary vertex filter
- beam halo filter
- HBHE noise filter
- HBHEiso noise filter
- ECAL TP filter
- ee badSC noise filter
- bad muon filter
- bad charged hadron filter
- twiki
How to get the weight factor for α_i^C for a particle i with nearby particles j

1. define a local metric, α, that differs between pileup (PU) and leading vertex (LV)

2. using tracking information, define unique distributions of α for PU and LV

3. for the neutrals, ask “how PU-like is α for this particle?”, compute a weight for how LV-like it is

4. reweight the four-vector of the particle by this weight

$$\alpha_i^C = \log \left[\sum_{j \in \text{Ch, LV}} \frac{p_T,j}{\Delta R_{ij}} \Theta(R_0 - \Delta R_{ij}) \right]$$
p_\text{miss} significance

- quantifies the degree of compatibility of the \(p_\text{miss}\) with 0
- the significance is defined as a log-likelihood ratio
- a high value of \(S\) is an indication that the
 - \(p_\text{miss}\) observed in the event is not well explained by resolution smearing alone
 - suggesting that the event may contain unseen objects such as neutrinos or more exotic weakly interacting particles.
- to a good approximation, \(L(\vec{\epsilon})\) has the form of a Gaussian distribution
 - significance can be expressed in terms of a covariance matrix
 \[S = \left(\sum \vec{\epsilon}_i \right)^T V^{-1} \left(\sum \vec{\epsilon}_i \right) \]

null hypothesis: true \(p_\text{miss} = 0\)

\[S = 2 \ln \left(\frac{L(\vec{\epsilon} = \sum \vec{\epsilon}_i)}{L(\vec{\epsilon}' = 0)} \right) \]
p_T^{miss} significance

standard technique
- assuming resolution of unclustered PF candidates is isotropic in transverse plane

jackknife technique
- does not assume an isotropic covariance matrix including off-diagonal elements
- calculated using “delete-1” technique

both techniques compared to p_T^{miss}
- background: processes with no intrinsic p_T^{miss}
- signal: processes with intrinsic p_T^{miss}
- similar performance
- improvement with respect to regular p_T^{miss}
performance of p_T^{miss} significance in instrumental p_T^{miss} events

- using standard method
- in $Z\rightarrow ll$ events, with no jets or ≥ 1 jets
 - 0 jet requirement to further enhance the fake p_T^{miss} contribution
 - chi2 with 2 dof follow the distribution with no genuine p_T^{miss}
performance of p_T^{miss} significance in genuine p_T^{miss} events

- using standard covariance matrix estimation
- in $W\to lv$ events, with no jets or ≥ 1 jets
 - 0 jet requirement to enhance fake p_T^{miss} contribution
- chi2 with 2 dof follow the distribution with no genuine p_T^{miss}