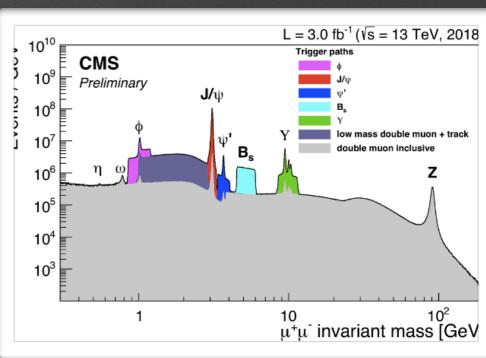



# Measurements of heavy flavor properties at CMS


Po-Hsun Chen(NTU, Taipei) on behalf of **the CMS Collaboration** 

ICHEP2018 @ Seoul

#### CMS in heavy-flavor studies



- Muon tracking system consists of muon chamber and silicon tracker covers wide rapidity and p<sub>T</sub> regions.
- Thanks to the highly sensitive tracker, even low energy photons can be measured accurately using conversions.
- Flexible trigger strategy provides a wide variety of study scopes including Higgs, SUSY, and even b-physics.

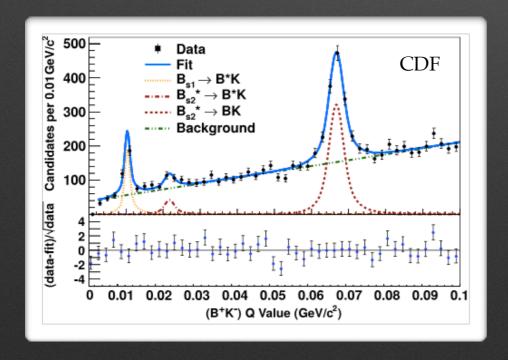


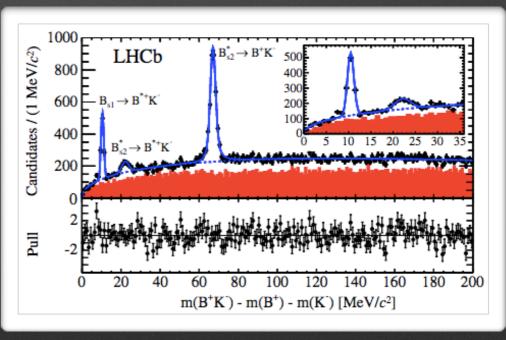
#### Outline



Observation of  $B_{s2}^*(5840)^0 \rightarrow B^0K_S$  decay and studies of excited  $B_s$  meson [CMS Preliminary result]

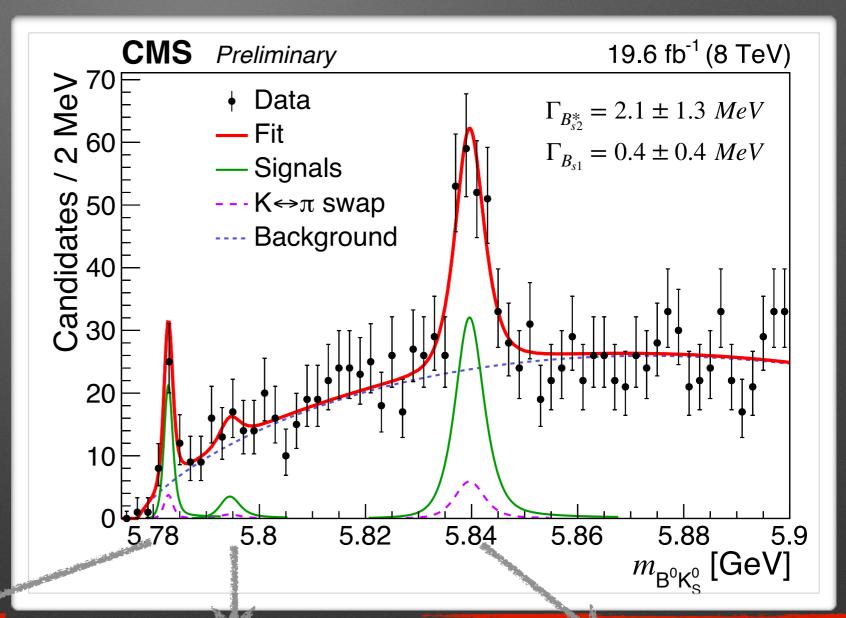
 $\Lambda_b$  polarization and angular parameters in  $\Lambda_b \rightarrow J/\psi \Lambda$  decays. [Phys. Rev. D 97 (2018) 072010]


Lifetime measurements of b hadrons reconstructed in final states with a  $J/\psi$  meson. [Eur. Phys. J. C 78 (2018) 457]


#### Introduction to P-wave B<sub>s</sub><sup>0</sup> states

• Since b quark is considerably heavier than s quark, heavy quark effective theory(HQET) can be used to describe the b-s system with orbital momentum L and the light quark spin.

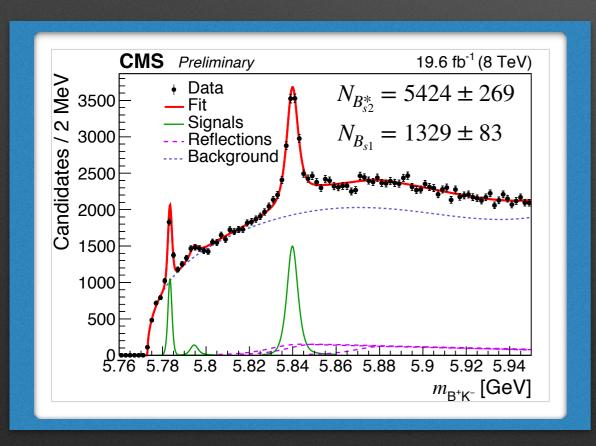
The observed P-wave(L=1) states are  $B_{s2}^*(5840)^0$  (JP=2+) and  $B_{s1}(5830)^0$ , (JP=1+)


• Orbital excited  $B_s$  states were seen by CDF, D0, and LHCb through  $B^{(*)+}K^-$  channels through a D-wave. According to HQET, it's allowed to replace  $B^{(*)+}K^-$  with  $B^{(*)0}K_s$  in these decays as long as  $J^P$  is kept conserved.





## Observation of $B_{s2}^*(5840)^0 \rightarrow B^0K_S$ decay and evidence of $B_{s1}(5830)^0 \rightarrow B^{*0}K_S$ decay


- 8 TeV pp parked dataset of 19.8/fb
- $K \leftrightarrow \pi$  swap in  $B^0 \rightarrow J/\psi K^+\pi^-$  makes a wider peak.
- Peaks modeled by relativistic Breit-Wigner function (RBW) convolved with detector resolution. Natural widths and masses are free to float.
- Background modeled by a threshold function.



 $B_{s1}(5830)^0 \rightarrow B^{*0}K_S$ 34.5±8.3 events, 3.9 $\sigma$   $B_{s2}^*(5840)^0 \rightarrow B^{*0}K_S$ 12±11 events  $B_{s2}^{*}(5840)^{0} \rightarrow B^{0}K_{S}$ 128±22 events, 6.3 $\sigma$ 

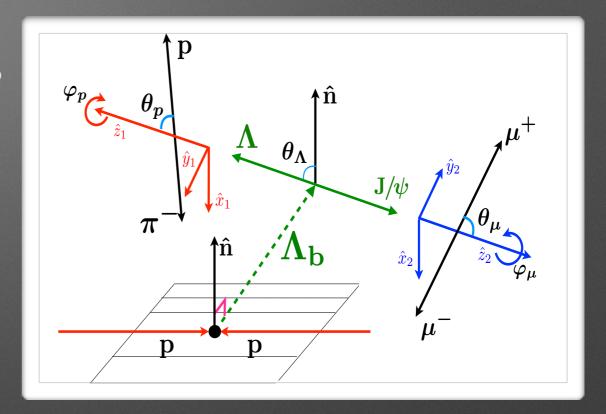
## Relative branching ratios

$$R_{2}^{0\pm} = \frac{B(B_{s2}^{*} \to B^{0}K_{s}^{0})}{B(B_{s2}^{*} \to B^{+}K^{-})} = \frac{N(B_{s2}^{*} \to B^{0}K_{s}^{0})}{N(B_{s2}^{*} \to B^{+}K^{-})} \times \frac{E(B_{s2}^{*} \to B^{+}K^{-})}{E(B_{s2}^{*} \to B^{0}K_{s}^{0})} \times \frac{B(B^{+} \to J/\psi K^{+})}{B(B^{0} \to J/\psi K^{*0})B(K^{*0} \to K^{+}\pi^{-})B(K_{s} \to \pi^{+}\pi^{-})}$$
From PDG values



 $R_{s2}^{0\pm}=0.432$ 

 $\pm 0.077(stat.) \pm 0.075(syst.) \pm 0.021(PDG)$ 


 $R_{s1}^{0\pm}=0.492$ 

±0.122(stat.)±0.068(syst.)±0.024(PDG)

#### $\Lambda_b$ polarization and angular parameters

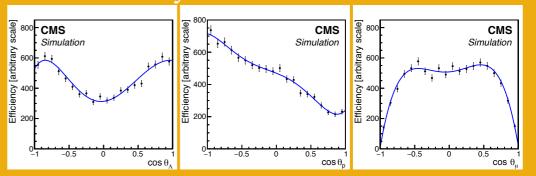
- LHCb measures transverse polarization at the order of 10%. However, the reference predictions range up to 20%, which is at level of  $2.7\sigma$ .
- Parity asymmetry parameter has been calculated to lie in -21~ -10 % in most publications. However, the HQET obtains a large positive value of 78%.

  [Physics Letters B 724 (2013) 27]
- $\Lambda_b \rightarrow \Lambda(\rightarrow p\pi$ -)J/ $\psi(\rightarrow \mu + \mu$ -) from 7 TeV data of 5.2/fb and 8 TeV data of 19.8/fb.



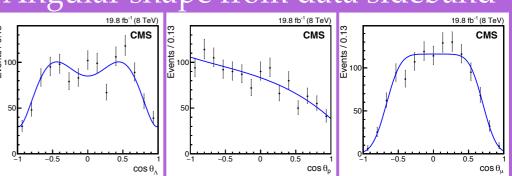
- Assuming uniform detector acceptance over the azimuthal angles  $\varphi_p$  and  $\varphi_\mu$ , angular distribution of the decay daughters can be described by 5 angular parameters. [Nucl. Phys. Proc. Suppl. 50 (1996) 125]
  - **P** :  $\Lambda_b$  transverse polarization.
    - $\alpha_1$ :  $\Lambda_b$  parity-violating asymmetry parameter.
    - $\alpha_2$ :  $\Lambda$  longitudinal polarization.
    - $\alpha_{\Lambda}$ : Asymmetry parameter in  $\Lambda \rightarrow p\pi$  decay. Fix to world-average 0.642  $\pm$  0.013.
    - $\gamma_0$ : A linear combination of complex helicity amplitudes.

## Analysis strategy - fit PDF

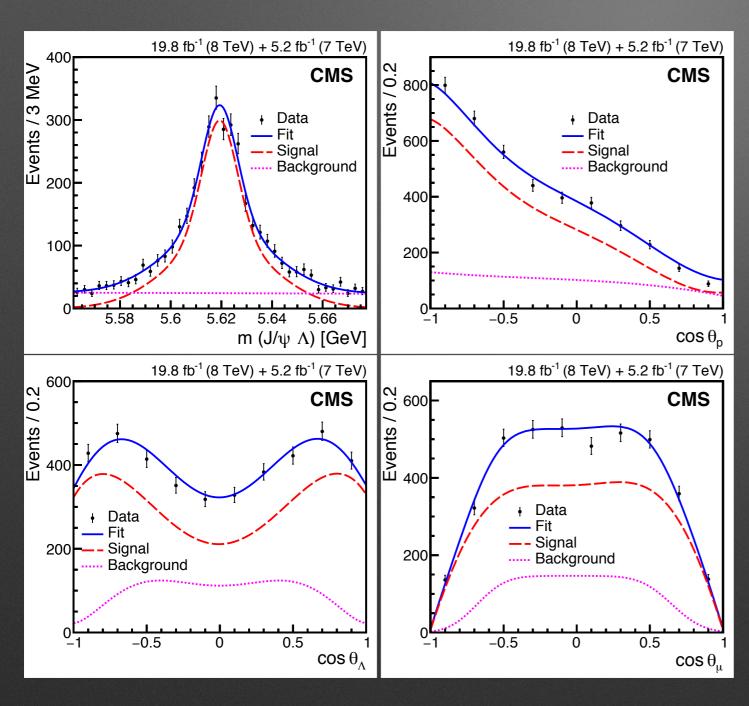

$$\begin{split} L &= exp(-N_{sig} - N_{bkg}) \\ &\times \prod^{N} \left[ N_{sig} F_{sig}(\overrightarrow{\theta}; P, \alpha_{1}, \alpha_{2}, \alpha_{\Lambda}, \gamma_{0}) \cdot \varepsilon(\overrightarrow{\theta}) \cdot G(m_{J/\Psi\Lambda}) + N_{bkg} F_{bkg}(\overrightarrow{\theta}) \cdot P(m_{J/\Psi\Lambda}) \right] \end{split}$$

$$F_{sig} = \frac{d^{3}\Gamma}{dcos\theta_{\Lambda}dcos\theta_{p}dcos\theta_{\mu}}(\theta_{\Lambda}, \theta_{p}, \theta_{\mu})$$

$$\sim \sum_{0}^{8} u_{i}(P, \alpha_{1}, \alpha_{2}, \gamma_{0}) \cdot v_{i}(P, \alpha_{\Lambda}) \cdot w_{i}(\theta_{\Lambda}, \theta_{p}, \theta_{\mu})$$


| i | $u_i$                    | $v_i$               | $w_i$                                                                                    |
|---|--------------------------|---------------------|------------------------------------------------------------------------------------------|
| 1 | 1                        | 1                   | 1                                                                                        |
| 2 | $\alpha_2$               | $\alpha_{\Lambda}$  | $\cos \theta_{\rm p}$                                                                    |
| 3 | $-\alpha_1$              | P                   | $\cos \theta_{\Lambda}$                                                                  |
| 4 | $-(1+2\gamma_0)/3$       | $\alpha_{\Lambda}P$ | $\cos \theta_{\Lambda} \cos \theta_{\rm p}$                                              |
| 5 | $\gamma_0/2$             | 1                   | $(3\cos^2\theta_{\mu}-1)/2$                                                              |
| 6 | $(3\alpha_1-\alpha_2)/4$ | $\alpha_{\Lambda}$  | $\cos\theta_{\rm p} \left(3\cos^2\theta_{\mu}-1\right)/2$                                |
| 7 | $(\alpha_1-3\alpha_2)/4$ | P                   | $\cos\theta_{\Lambda} \left(3\cos^2\theta_{\mu} - 1\right)/2$                            |
| 8 | $(\gamma_0-4)/6$         | $\alpha_{\Lambda}P$ | $\cos \theta_{\Lambda} \cos \theta_{\rm p} \left( 3 \cos^2 \theta_{\mu} - 1 \right) / 2$ |

#### Efficiency correction from MC



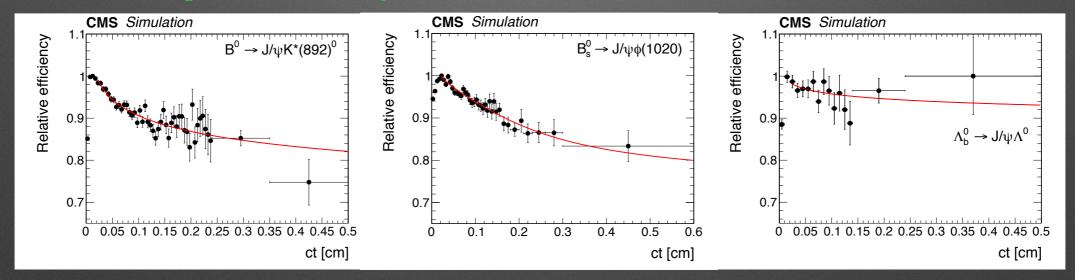

G : Double Gaussian P : Linear function

#### Angular shape from data sideband



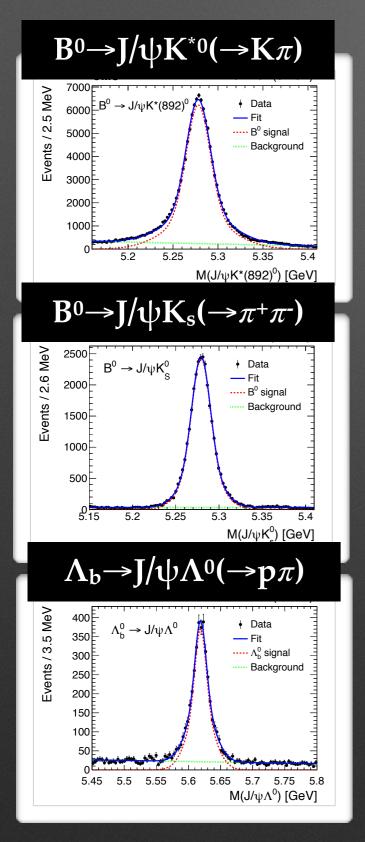
#### Results

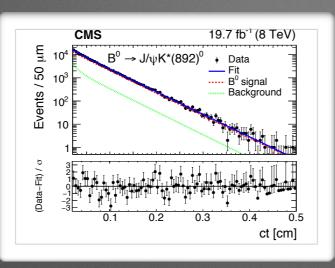


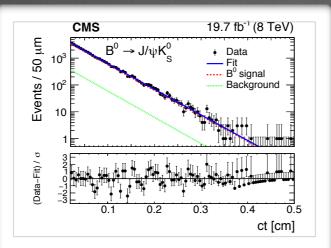

- ~6000 signal yields from both  $J/\psi\Lambda$  and  $J/\psi\overline{\Lambda}$ .
- P =  $0.00 \pm 0.06 \pm 0.06$   $\alpha_1$  =  $0.14 \pm 0.14 \pm 0.10$   $\alpha_2$  =  $-1.11 \pm 0.04 \pm 0.05$  $\gamma_0$  =  $-0.27 \pm 0.08 \pm 0.11$
- Measured P is consistent with LHCb result.
- Measured  $\alpha_1$  is consistent with LHCb(0.05±0.17±0.07) and ATLAS(0.30±0.16±0.06) results.
- Measured  $\alpha_2$  is compatible with -1, which implies  $\Lambda$  of positive-helicity state from  $\Lambda_b$  is suppressed.

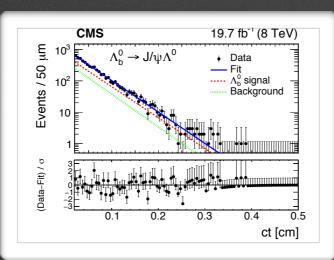
#### b lifetime measurement

- Precise lifetime measurement tells the story about underlying non-perturbative QCD.
- Some discrepancy of  $B_{c}^{+}$  lifetime measured by LHCb (~500 fs) and CDF, D0 (~450 fs). An independent measurement helps resolving this disagreement.
- 19.8/fb data of pp collision at 8 TeV (2012)
- Decay channels (all triggered by J/ψ→μ+μ-)
  - $B^0 \rightarrow J/\psi K^{*0}$ ,  $B^0 \rightarrow J/\psi Ks$
  - $\Lambda_b \rightarrow J/\psi \Lambda^0$
  - $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ ,  $B_s^0 \rightarrow J/\psi \varphi(1020)$
  - $B_c^+ \rightarrow J/\psi \pi^+$


## Analysis strategy


- $B^0$ ,  $B_s$ ,  $\Lambda_b$  lifetime (ct) measurement
  - Unbinned ML fit to mass, ct (=c  $L_{xy}$ \*m/ $p_T$ ),  $\sigma_{ct}$ .
  - Lifetime-dependent efficiency correction is taken into account.





- For B<sub>s</sub>, run unbinned extended ML fit to cope with background contribution from B<sup>+</sup>, B<sup>0</sup>, etc..
- B<sub>c</sub> lifetime measurement
  - Adopt the "Reference method" used by LHCb. [See also: PLB 742 (2015) 29]
    Based on precisely known B+ lifetime, difference in total widths between B<sub>c</sub> and B+ is used to obtain B<sub>c</sub> lifetime.
  - Systematic uncertainties shared by B<sup>+</sup> and B<sub>c</sub> channels are cancelled by choosing the same selection criteria and fitting method.

#### Result: $B^0$ , $\Lambda_b$







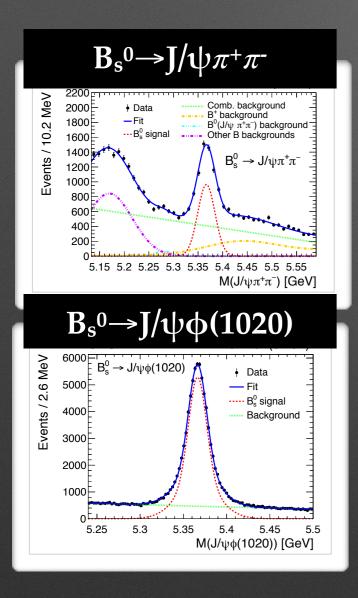


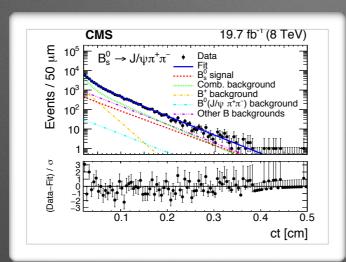
#### $c\tau = 453.0 \pm 1.6 \mu m$

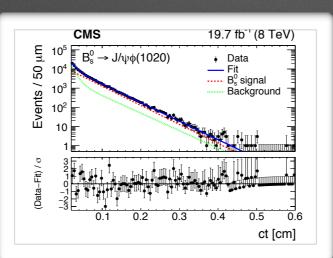
Consistent with PDG value: 456.0 ± 1.2 µm

#### $c\tau = 457.8 \pm 2.7 \, \mu m$

Consistent with PDG value :  $456.0 \pm 1.2 \mu m$ 


- $K_s \operatorname{track} d_{xy}/\sigma > 2$
- $K_s$  vertex  $d_{xy}/\sigma > 15$


#### $c\tau = 432.9 \pm 8.2 \mu m$


Consistent with PDG value : 441.0 ± 3.0 µm

- $\Lambda \operatorname{track} d_{xy}/\sigma > 2$
- $\Lambda \text{ vertex } d_{xy}/\sigma > 15$

#### Result: B<sub>s</sub><sup>0</sup>

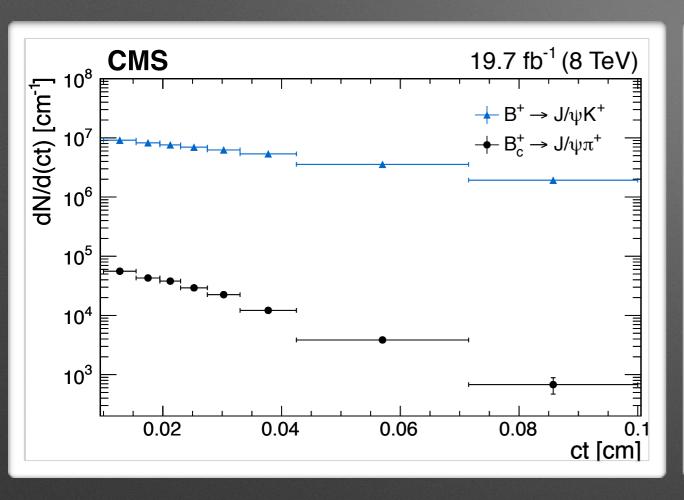


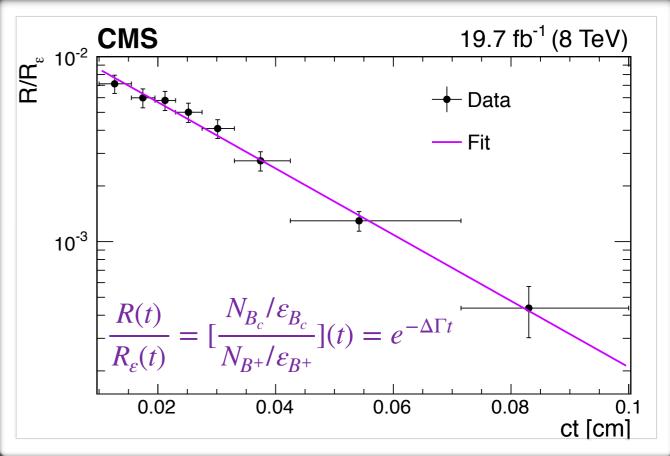




#### $c\tau = 502.7 \pm 10.2 \, \mu m$

Consistent with PDG value: 497.4 ± 9.6 µm


- Extended ML fit
- $1.02 > m_{\pi\pi} > 0.92$  GeV, CP-odd state


#### $c\tau = 443.9 \pm 2.0 \ \mu m$

Consistent with PDG value :  $443.7 \pm 3.6 \mu m$ 

- ф(1020)→KK
- Mixture of B<sub>sH</sub> and B<sub>sL</sub>

#### Result: $B_c^+ \rightarrow J/\psi \pi^+ \text{ wrt } B^+ \rightarrow J/\psi K^+$





- $\pi$  or K  $p_T > 3.3 \text{ GeV}$
- $B_c p_T > 10 \text{ GeV}$
- $|\eta_B| < 2.2$
- Same condition on B<sup>+</sup> reference to cancel systematics.

With referenced  $c\tau(B^+) = 491.1 \pm 1.2 \mu m$ 

 $c\tau = 162.3 \pm 7.8 \, \mu m$ 

Fitting result to efficiency-corrected ratio in favors of LHCb result (152.7  $\pm$  2.7  $\mu$ m)

#### Summary

- Observation(6.3 $\sigma$ ) of  $B_{s2}^*(5840)^0 \rightarrow B^0K_S$  decay and evidence(3.9 $\sigma$ ) of  $B_{s1}(5830)^0 \rightarrow B^{*0}K_S$  decay
  - Branching ratios to  $B^{(*)+}K$  channel and natural widths are also measured.
- Angular parameters of  $\Lambda_b \rightarrow \Lambda J/\psi$  is measured.
  - Transverse polarization,  $0.00\pm0.06\pm0.06$ , is consistent with LHCb result.
  - Parity-asymmetry parameter, 0.14±0.14±0.10, lies in range of most publications. However, the HQET prediction, 0.78, is disfavored.
  - $\Lambda$  with positive helicity is suppressed in the decay.
- Measured lifetimes of b hadrons shows nice match to world-average with great precision.
  - The LHCb result is favored for B<sub>c</sub> lifetime discrepancy.

Backup

#### More properties and by-products

|                                                                       | $B^+K^-$           | $B^0K_s^0$       |
|-----------------------------------------------------------------------|--------------------|------------------|
| $N(\mathrm{B_{s2}^*} 	o \mathrm{BK})$                                 | $5424 \pm 269$     | $128\pm22$       |
| $N(\mathrm{B}_{\mathrm{s}2}^{*}  ightarrow \mathrm{B}^{*}\mathrm{K})$ | $455 \pm 119$      | $12\pm11$        |
| $N(\mathrm{B_{s1}} 	o \mathrm{B^*K})$                                 | $1329 \pm 83$      | $34.5 \pm 8.3$   |
| $\Gamma(\mathrm{B_{s2}^*})$ , MeV                                     | $1.52 \pm 0.34$    | $2.1 \pm 1.3$    |
| $\Gamma(B_{s1})$ , MeV                                                | $0.10 \pm 0.15$    | $0.4 \pm 0.4$    |
| $M(B_{s2}^*) - M(B) - M(K)$ , MeV                                     | $66.926 \pm 0.093$ | $62.42 \pm 0.48$ |
| $M(B_{s1}) - M(B^*) - M(K)$ , MeV                                     | $10.495 \pm 0.089$ | $5.65 \pm 0.23$  |

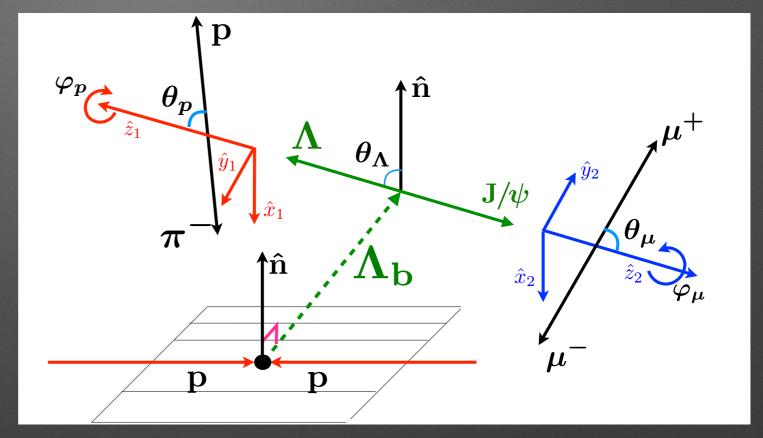
## Relation between angular parameters and helicity amplitudes

$$1 = |T_{++}|^2 + |T_{+0}|^2 + |T_{-0}|^2 + |T_{--}|^2,$$

$$\alpha_1 = |T_{++}|^2 - |T_{+0}|^2 + |T_{-0}|^2 - |T_{--}|^2,$$

$$\alpha_2 = |T_{++}|^2 + |T_{+0}|^2 - |T_{-0}|^2 - |T_{--}|^2,$$

$$\gamma_0 = |T_{++}|^2 - 2|T_{+0}|^2 - 2|T_{-0}|^2 + |T_{--}|^2$$


 $T_{\lambda 1,\lambda 2}$  are complex helicity amplitudes  $\lambda 1: \pm \frac{1}{2} (\Lambda)$  and  $\lambda 2: \pm 1, 0 (J/\psi)$ 

$$|T_{++}|^2 = 0.05 \pm 0.04 \text{ (stat)} \pm 0.04 \text{ (syst)},$$
  
 $|T_{+0}|^2 = -0.10 \pm 0.04 \text{ (stat)} \pm 0.04 \text{ (syst)},$   
 $|T_{-0}|^2 = 0.51 \pm 0.03 \text{ (stat)} \pm 0.04 \text{ (syst)},$   
 $|T_{--}|^2 = 0.52 \pm 0.04 \text{ (stat)} \pm 0.04 \text{ (syst)}.$ 

#### Event selection for $\Lambda_b$ decay

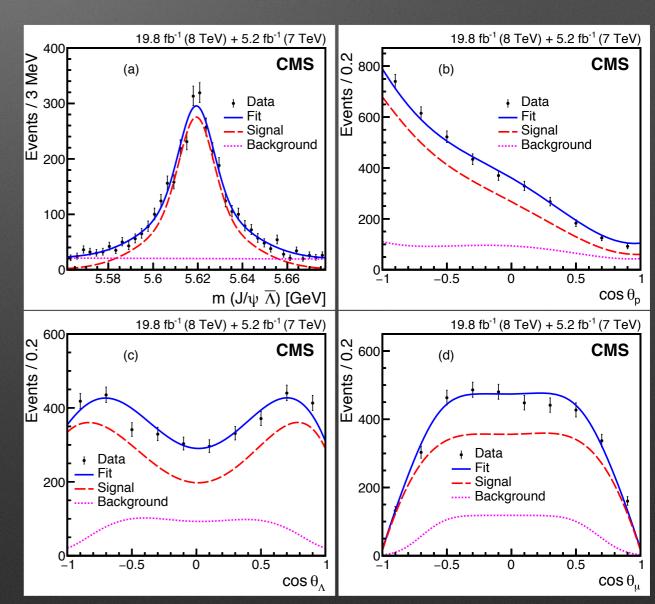
$$p_{T,p} > 1 \; GeV$$
 $p_{T,\pi} > 0.3 \; GeV$ 
 $p_{T,p\pi} > 8 \; GeV$ 
 $|m_{p\pi} - m_{\Lambda}| < 9 \; MeV$ 
 $|m_{p\pi} - m_{Ks}| > 20 \; MeV$ 

$$\begin{array}{c|c} \mu & p_{T,\mu} > 4 \; GeV \\ & |\eta_{\mu}| < 2.2 \\ & p_{T,\mu\mu} > 8 \; GeV \\ & |m_{\mu\mu} - m_{J/\Psi}| < 0.15 \; GeV \\ & cos\theta_{\overrightarrow{p}_{\mu\mu}, \overline{BS}, \mu\mu \; vertex} > 0.99 \end{array}$$



```
Λb p_{T,ΛJ/Ψ} > 10 ~GeV

Vertex Prob(Λ_b) > 10 ~\%


5.84 ~GeV > m_{ΛJ/Ψ} > 5.40 ~GeV
```

## Ab Fitting result

#### $J/\psi\Lambda$

#### 19.8 fb<sup>-1</sup> (8 TeV) + 5.2 fb<sup>-1</sup> (7 TeV) 19.8 fb<sup>-1</sup> (8 TeV) + 5.2 fb<sup>-1</sup> (7 TeV) Events / 3 MeV 008 00 **CMS CMS** (a) (b) Events / → Data + Data Fit Signal — Fit -- Signal Background Background 400 100 200 5.58 5.6 5.62 5.64 5.66 -0.5 0 0.5 $\cos \theta_{\rm p}$ m (J/ $\psi$ $\Lambda$ ) [GeV] 19.8 fb<sup>-1</sup> (8 TeV) + 5.2 fb<sup>-1</sup> (7 TeV) 19.8 fb<sup>-1</sup> (8 TeV) + 5.2 fb<sup>-1</sup> (7 TeV) Events / 0.2 O. 600 **CMS CMS** (c) (d) Events / ( → Data Data Fit Fit -- Signal -- Signal 200 200 Background Background -0.5 0.5 -0.5 0.5 0 $\cos \theta_{\Lambda}$ $\cos \theta_{\mu}$

#### $J/\psi \overline{\Lambda}$



#### Syst. error of $\Lambda_b$ angular parameters

| Source                                           | $P(\times 10^{-2})$ | $\alpha_1(\times 10^{-2})$ | $\alpha_2(\times 10^{-2})$ | $\gamma_0(	imes 10^{-2})$ |
|--------------------------------------------------|---------------------|----------------------------|----------------------------|---------------------------|
| Fit bias                                         | 0.1                 | 0.3                        | 0.1                        | 0.2                       |
| Asymmetry parameter $\alpha_{\Lambda}$           | 0.4                 | 0.7                        | 2.0                        | 0.6                       |
| Background $m_{J/\psi\Lambda}$ distribution      | 0.01                | 0.5                        | 1.0                        | 0.9                       |
| Background angular distribution                  | 0.4                 | 0.5                        | 0.9                        | 5.0                       |
| Signal $m_{\mathrm{J/\psi}\Lambda}$ distribution | 0.01                | 0.3                        | 1.0                        | 1.0                       |
| Angular efficiencies                             | 0.1                 | 0.3                        | 3.0                        | 1.0                       |
| Angular resolution                               | 1.0                 | 0.1                        | 2.6                        | 0.8                       |
| Azimuthal angle efficiency                       | 0.1                 | 1.0                        | 0.3                        | 0.1                       |
| Weighting procedure                              | 0.1                 | 1.3                        | 0.4                        | 2.0                       |
| Reconstruction bias                              | 5.7                 | 9.8                        | 2.0                        | 9.1                       |
| Total (quadrature sum)                           | 5.8                 | 10.0                       | 5.1                        | 11.1                      |

#### Systematics in lifetime measurement

| Source                             | $B^0 \to J/\psi K^*(892)^0$ | $B^0 \rightarrow J/\psi K_S^0$ | $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ | $B_s^0 \rightarrow J/\psi \phi$ | $\Lambda_{\rm b}^0 \rightarrow J/\psi \Lambda^0$ |
|------------------------------------|-----------------------------|--------------------------------|----------------------------------------|---------------------------------|--------------------------------------------------|
| PV selection                       | 0.7                         | 0.7                            | 0.7                                    | 0.7                             | 0.7                                              |
| Detector alignment                 | 0.3                         | 0.7                            | 0.3                                    | 0.3                             | 0.7                                              |
| MC statistical uncertainty         | 1.1                         | 2.4                            | 2.0                                    | 0.6                             | 2.3                                              |
| Mass modelling                     | 0.3                         | 0.4                            | 0.2                                    | 0.4                             | 0.9                                              |
| Efficiency modelling               | 0.3                         | 0.5                            | 0.6                                    | 0.2                             | 0.6                                              |
| ct resolution                      | 0.0                         | 0.1                            | 0.1                                    | 0.1                             | 0.2                                              |
| ct modelling                       | 0.1                         | 0.1                            | 0.4                                    | 0.0                             | 0.1                                              |
| $B^+$ contamination                | <u> </u>                    |                                | 1.4                                    |                                 |                                                  |
| Mass window of $\pi^+\pi^-$        | <u> </u>                    |                                | 1.8                                    |                                 |                                                  |
| $K^{\pm}\pi^{\mp}$ mass assignment | 0.3                         |                                |                                        |                                 |                                                  |
| ct range                           | <u> </u>                    |                                |                                        | 0.1                             |                                                  |
| S-wave contamination               | <del></del>                 |                                |                                        | 0.4                             |                                                  |
| Total (µm)                         | 1.5                         | 2.7                            | 3.2                                    | 1.2                             | 2.7                                              |

| Source                     | $\Delta\Gamma$ [ps <sup>-1</sup> ] | $c\tau_{\rm B_c} [\mu {\rm m}]$ |
|----------------------------|------------------------------------|---------------------------------|
| PV selection               | 0.02                               | 2.0                             |
| Detector alignment         | 0.01                               | 0.6                             |
| MC statistical uncertainty | 0.01                               | 1.3                             |
| Mass modelling             | 0.04                               | 3.7                             |
| ct binning                 | 0.01                               | 1.4                             |
| Total uncertainty          | 0.05                               | 4.7                             |
|                            |                                    |                                 |