Searching for Flavor Changing Neutral Currents at BESIII

Dayong Wang Peking University, China (for BESIII Collaboration)

FCNC is suppressed in SM

PHYSICAL REVIEW D

VOLUME 2. NUMBER 7

1 OCTOBER 1970

Weak Interactions with Lepton-Hadron Symmetry*

FCNC in charm decays

Reported in this talk:

- $\Box J/\psi \to D^0 e^+ e^- + c. c. \text{ and } \psi(3686) \to D^0 e^+ e^- + c. c. Phys. Rev. D96,111101 (RC) (2017)$
- □ Search $\psi(3686) \rightarrow \Lambda_c^+ \bar{p} e^+ e^- + \text{c.c.}$ *Phys. Rev. D 97, 091102(RC)(2018)*
- $\square \text{ Search for } D \rightarrow h(h') ee Phys. Rev. D 97, 072015 (2018)$
- **\Box** Search for D⁺ \rightarrow h⁺e⁺e⁻ and D⁺ \rightarrow h⁻e⁺e⁺ *BESIII preliminary*

More BESIII new physics search results: Shenjian Chen's talk, July 5 @DM session

competitive in channels with low energy electron/photons, neutrons, pi0's

Search for the rare decays $J/\psi \rightarrow D^0 e^+ e^- + c. c.$ and $\psi(3686) \rightarrow D^0 e^+ e^- + c. c.$

dataset: 1310M J/ ψ and 448M ψ (3686) With D decay modes: $D^0 \rightarrow K^- \pi^+$ $D^0 \rightarrow K^- \pi^+ \pi^0$

 $D^0 \to K^- \pi^+ \pi^+ \pi^-$

Published at Phys. Rev. D96,111101(2017) (RC)

Simultaneous fit for three decay channels.

Systematic Uncertainties

	$D^0 o K^- \pi^+$		$D^0 o K^- \pi^+ \pi^0$		$D^0 ightarrow K^- \pi^+ \pi^+ \pi^-$	
	J/ψ	$\psi(3686)$	J/ψ	$\psi(3686)$	J/ψ	<i>ψ</i> (3686)
Tracking*	4.0	4.0	4.0	4.0	6.0	6.0
PID*	6.0	6.0	6.0	6.0	8.0	8.0
γ detection			1.2	1.2		
Kinematic fit	1.7	1.6	1.1	1.8	2.2	2.0
Veto γ conversion*	1.7	1.7	1.7	1.7	1.7	1.7
Veto $K_S \to \pi^0 \pi^0$			0.6			
Veto $K_{S} \rightarrow \pi^{+}\pi^{-}$					2.1	2.2
Veto $J/\psi \rightarrow e^+e^-$		0.1		• • •		
Branching fraction	1.3	1.3	3.6	3.6	2.6	2.6
ψ total number*	0.55	0.62	0.55	0.62	0.55	0.62
Others	1.0	1.0	1.0	1.0	1.0	1.0
Total	7.8	7.8	8.5	8.7	11.0	10.9

The Upper Limits on BRs

combining three D decay channels

Considering the systematic uncertainty, at 90%C.L. $J/\psi \rightarrow D^0 e^+ e^- + c.c. < 8.5 \times 10^{-8}$ more stringent by 2 orders in magnitude compared to the previous results Phys. Lett. B 639, 418 (2006). $\psi(3686) \rightarrow D^0 e^+ e^- + c.c. < 1.4 \times 10^{-7}$ set for the first time

EXAMPLE Search $\psi(3686) \rightarrow \Lambda_c^+ \overline{p} \ e^+ e^- + c.c.$

 \geq

Event selection

- $\Box \quad \psi(3686) \to \Lambda_c^+ \ \overline{p} \ e^+ e^- + \text{c.c.}$ $\succ \quad \Lambda_c^+ \to p \ K^- \ \pi^+$
- □ Final state
 - $p \overline{p} K^- \pi^+ (K^+ \pi^-) e^+ e^-$
- At least 3 positive and 3 negative charged tracks are required with zero net charge
- partID, vertexFit, 4CFit
- Define 2.25 $\leq m(\Lambda_c^+) \leq$ 2.32
 GeV as signal region (>99%)

New physics models predict the BR could reach ~10⁻⁶ Phys. Rev. D 60, 014011(1999); Nucl. Phys. 25, 461 (2001);

29 simulated events remain after 4C kinematic fit, from inclusive $\psi(3686)$ MC sample of 506 M events. Most of the background contain Λ or $\overline{\Lambda}$ particle.

The continuum background in the $\psi(3686)$ data is negligible.

2018/7/7 ICHEP2018

Dayong Wang

 $\psi(3686) \rightarrow \Lambda_c^+ \, \overline{p} \, e^+ e^-$ Syst. Unc.

systematic uncert	ainty(%)
0.6	
9.0	
9.0	
1.0	Physics model:
5.2	• VMD model with FF
4.0	• 1)Extreme case • $a^{tr}(2S) \rightarrow V \overline{z}$
1.0	• $\psi(2S) \rightarrow X p;$ $1+\cos^2\theta$
34.3	• $X \rightarrow \Lambda_c^* e^+ e^-$ (VIVID); 7.2% \rightarrow 4.7%
37.2	 • 2) PHSP model. 7.2%→6.6%
	systematic uncert 0.6 9.0 9.0 1.0 5.2 1.0 1.0 34.3 37.2

ESE $\psi(3686) \rightarrow \Lambda_c^+ \overline{p} \ e^+ e^-$ search result

 The BF upper limit @90% C.L. is determined to be 1.7×10⁻⁶ with systematic uncertainties taken into account.

D->h(h')ee: previous results

Decay	Upper limit	Experiment	Year	Ref.
$D^0 \rightarrow \pi^0 e^+ e^-$	45.0	CLEO	1996	[14]
$D^0 \to \eta e^+ e^-$	110.0	CLEO	1996	[14]
$D^0 ightarrow \omega e^+ e^-$	180.0	CLEO	1996	[14]
$D^0 \to \overline{K}{}^0 e^+ e^-$	110.0	CLEO	1996	[14]
$D^0 o ho e^+ e^-$	124.0	E791	2001	[15]
$D^0 \rightarrow \phi e^+ e^-$	59.0	E791	2001	[15]
$D^0 ightarrow \overline{K}^{*0} e^+ e^-$	47.0	E791	2001	[15]
$D^0 \to \pi^+\pi^- e^+ e^-$	370.0	E791	2001	[15]
$D^0 \to K^+ K^- e^+ e^-$	315.0	E791	2001	[15]
$D^0 \to K^- \pi^+ e^+ e^-$	385.0	E791	2001	[15]
$D^+ \to \pi^+ e^+ e^-$	1.1	BaBar	2011	[16]
$D^+ \rightarrow K^+ e^+ e^-$	1.0	BaBar	2011	[16]
$D^+ \to \pi^+ \pi^0 e^+ e^-$				
$D^+ \rightarrow \pi^+ K^0_S e^+ e^-$	In unit of	10-		
$D^+ \to K^+ \pi^0 e^+ e^-$				
$D^+ \rightarrow K^+ \overline{K}{}^0 e^+ e^-$				

- **D** Previous D^0 limits are in the level of $10^{-5} \sim 10^{-4}$
- □ D⁺ limits are better, but only few three-body decays
- □ LHCb observed some four-body decays of $D^0 \rightarrow hh\mu^+\mu^-$ at 10⁻⁷ level
- BESIII could probe all of the above e+e- modes

Events/(0.0006 GeV/c²

Double tag(DT) analysis

Signal decays	\mathcal{B} (×10 ⁻⁵)	PDG [9] (×10 ⁻⁵)
$D^+ ightarrow \pi^+ \pi^0 e^+ e^-$	< 1.4	
$D^+ \rightarrow K^+ \pi^0 e^+ e^-$	<1.5	
$D^+ \rightarrow K^0_{\rm S} \pi^+ e^+ e^-$	<2.6	
$D^+ \rightarrow K^{0}_{S}K^+e^+e^-$	<1.1	
$D^0 \rightarrow K^- K^+ e^+ e^-$	<1.1	<31.5
$D^0 ightarrow \pi^+\pi^- e^+ e^-$	< 0.7	<37.3
$D^0 \rightarrow K^- \pi^+ e^+ e^{-\dagger}$	<4.1	<38.5
$D^0 o \pi^0 e^+ e^-$	< 0.4	<4.5
$D^0 \rightarrow \eta e^+ e^-$	< 0.3	<11
$D^0 \rightarrow \omega e^+ e^-$	< 0.6	<18
$D^0 \rightarrow K^0_S e^+ e^-$	< 1.2	<11
[†] in $M_{e^+e^-}$ regions:		
[0.00, 0.20) GeV/c ²	$< 3.0 \ (1.5^{+1.0}_{-0.9})$	
[0.20, 0.65) GeV/c ²	< 0.7	
[0.65, 0.90) GeV/c ²	$< 1.9 \ (1.0^{+0.5}_{-0.4})$	

Phys. Rev. D 97, 072015 (2018)

 With double tag technique at threshold, both D° and D+ FCNC are studied.

- UL for D⁺ 4-track events are provided for 1st time
- other FCNC upper limits are greatly improved
- divide the M(ee) distribution into 3 regions for Kpiee to help separate LD effect

EXAMPLE $D^+ \rightarrow h^+ e^+ e^- \text{ and } D^+ \rightarrow h^- e^+ e^+$

- FCNC (e.g. D⁺→h⁺e⁺e⁻) processes are expected to be very rare since it can not occur at tree level in the SM.
 Short distance: ~ 10⁻¹⁰⁻⁻⁹ level, MPLA8 (1993) 967
 Long distance: ~ 10⁻⁶⁻⁻⁵ level, PRD76 (2007) 074010
- Lepton Number Violation (LNV) (e.g. D⁺→h⁻e⁺e⁺) decays are forbidden in the SM, while beyond the SM

Majorana neutrino: ~ 10^{-30~-23} level, PRD64 (2001) 114009

may be greatly enhanced to ~10^{-5~-6} , EPJC71 (2011) 1715

$\mathcal{B}(D^+ \to) \setminus [\times 10^{-6}]$	$K^+e^+e^-$	$K^-e^+e^+$	$\pi^+e^+e^-$	$\pi^-e^+e^+$
CLEO[1]	-	-	2600	-
MARK2[2]	4800	9100	2500	4800
E687[3]	200	120	110	110
E791[4]	200	-	52	96
CLEO[5]	3.0	3.5	5.9	1.1
Babar[6]	1.0	0.9	1.1	1.9
PDG[7]	1.0	0.9	1.1	1.1

Scatter plots for M_{BC} versus ΔE , where the signal regions are shown as a blue rectangle. The contours are determined from MC simulation to enclose 84% of signal events for each channel.

D⁺→h⁺ee preliminary results

₽€SⅢ							
Preliminary	$N_{ m inside}^{ m data}$	$N_{ m outside}^{ m data}$	$f_{ m scale}$	ϵ [%]	$\Delta_{ m sys}$ [%]	s_{90}	$\mathcal{B}[imes 10^{-6}]$
$D^+ \rightarrow K^+ e^+ e^-$	5	6 9	0.08 ± 0.01	22.53	5.4	19.4	< 1.2
$D^+ \rightarrow K^- e^+ e^+$	3	55	0.08 ± 0.01	24.08	6.1	10.2	< 0.6
$D^+ \to \pi^+ e^+ e^-$	3	65	0.09 ± 0.02	25.72	5.9	4.2	< 0.3
$D^+ \to \pi^- e^+ e^+$	5	68	0.06 ± 0.02	28.08	6.8	20.5	< 1.2

While s₉₀ is estimated with **TROLKE** program, and the upper limit of branching fraction is calculated by

$$\mathcal{B} < rac{s_{90}}{N_{D^+}^{ ext{tot}}}$$

where $N_{D^+}^{\rm tot} = (1.681 \pm 0.032) \times 10^7$

R S

B€SⅢ

2018/7/7

ICHEP2018

Search for $D^0 \to \pi^0 \nu \overline{\nu}$:

18

- EM dynamics is absent
- LD contributions are much suppressed
- Much clean to probe FCNC transitions in charm
- Could be complementary to results from B mesons
 - Belle $B \rightarrow h^{(*)} vv$: Phys. Rev. Lett. 99, 221802 (2007).
 - BaBar B^o → γνν: Phys. Rev. Lett. 93, 091802 (2004).

Decay mode	Experimental limit	$\mathcal{B}r_{S.D.}$	$Br_{L.D.}$	Pure neutral final
$D^+ \rightarrow X^+_{\mu} e^+ e^-$		2×10^{-8}		state with missing
$D^+ \rightarrow \pi^+ e^+ e^-$	$< 4.5 \times 10^{-5}$		2×10^{-6}	
$D^+ \rightarrow \pi^+ \mu^+ \mu^-$	$<1.5\times10^{-5}$		1.9×10^{-6}	momenta.
$D^+ \rightarrow \rho^+ e^+ e^-$	$< 1.0 \times 10^{-4}$		4.5×10^{-6}	Unique for BESIII.
$D^0 \rightarrow X_u^0 e^+ e^-$		0.8×10^{-8}		Work ongoing
$D^0 \rightarrow \pi^0 e^+ e^-$	$< 6.6 \times 10^{-5}$		0.8×10^{-6}	WORK ONGOING
$D^0 \rightarrow \rho^0 e^+ e^-$	$< 5.8 \times 10^{-4}$		1.8×10^{-6}	
$D^0 \rightarrow \rho^0 \mu^+ \mu^-$	$<2.3 \times 10^{-4}$		1.8×10^{-6}	
$D^+ \rightarrow X^+_{\mu} \nu \overline{\nu}$		1.2×10^{-15}		
$D^+ \rightarrow \pi^+ \nu \overline{\nu}$			5×10^{-16}	
$D^0 \rightarrow \overline{K}^0 \nu \overline{\nu}$			2.4×10^{-16}	
$D_s \rightarrow \pi^+ \nu \overline{\nu}$			8×10^{-15}	
Phys. Rev. D 6	6 014009			

Dayong Wang

Search for $D \rightarrow K \pi e^+ e^+$ decays

- Lepton number violating(LNV) process (AL =2)
 - possibly due to a single Majorana neutrino exchange
- The best BR limit around 10⁻⁴ ~10⁻⁵ level by E791[PRL 86, 3969(2001)].
- BESIII could improve them to ~10⁻⁶
- Further constrain mass-dependent $D \rightarrow Ke^+\nu_N(\pi e^+)$ decay
 - constrain mixing matrix element |V_{eN}|²
- Work in progress, the results to be published

₿€SⅢ

- FCNC transitions are sensitive probes of new physics
- BESIII searches of FCNC in charmonium and charm meson decays provide the best limits on:
 - □ $J/\psi \rightarrow D^0 e^+ e^-$ and $\psi(3686) \rightarrow D^0 e^+ e^-$ Phys. Rev. D96,111101 (RC) (2017)
 - □ Search $\psi(3686) \rightarrow \Lambda_c^+ \overline{p} \ e^+ e^-$ Phys. Rev. D 97, 091102(RC)(2018)
 - □ Search for $D \rightarrow h(h')$ ee *Phys. Rev. D 97, 072015 (2018)*
 - □ Search for $D^+ \rightarrow h^+ e^+ e^-$ and $D^+ \rightarrow h^- e^+ e^+$ *BESIII preliminary*
- BESIII has great potential with unique (and increasing) datasets for new physics search:
 - More to come, stay tuned!

More BESIII new physics search results: Shenjian Chen's talk, July 5 @DM session