Hadronic Decays of $D^{0(+)}$ and D_s^+ at \mathbb{H}_s

Liaoyuan Dong

Institute of High Energy Physics, Beijing

(On behalf of the **₩SII** collaboration)

Outline

- Introduction
 - ➤ The **ES** experiment
 - Production near threshold and tag technique
- ullet Hadronic decays of $D_{(s)}$
 - Observation of pure W-annihilation decays:

$$D_s^+ o p \bar n,\, D_s^+ o \omega \pi^+,\, D_s^+ o a_0(980)\pi$$

 \blacktriangleright Amplitude analysis of $D \to K\pi\pi\pi$:

$$D^0 o K^-\pi^+\pi^+\pi^-,\, D^0 o K^-\pi^+\pi^0\pi^0,\, D^+ o K_s^0\pi^+\pi^+\pi^-$$

Measurement of the branching fractions(BFs) of

$$D o PP$$
 (P=pseudo-scalar)

Summary

The **E**S**II** Experiment

Beijing-Electron-Positron Collider II (BEPCII)

- $-e^+e^-$ collisions with $\sqrt{s} = 2.0 4.6 GeV$
- Direct production of charmonia
- Designed Luminosity

$$\mathcal{L} = 1 \times 10^{33} cm^{-2} s^{-1}$$
 was achieved in April 2016.

₩S**II** detector

- 93% coverage of the full solid angle
- Main drift chamber $\sigma_{
 m p}/{
 m p}=0.5\%@1{
 m GeV}$
- Time-of-flight system $\sigma_T = 100 \mathrm{ps}$ in Barrel
- Elmg. Calorimeter $\Delta E/E = 2.5\%$ @1GeV
- Superconducting 1T magnet
- Muon system (RPC)

Production near threshold and tag technique

Dataset used in this talk:

- 2.93 fb⁻¹ at Ecm = 3.773 GeV (~3.6x larger than CLEO's): D are produced via $e^+e^- \rightarrow \psi(3770) \rightarrow D\bar{D}$
- 3.19 fb⁻¹ at Ecm = 4.178 GeV (~5.3x larger than CLEO's): D_s are produced mostly via $e^+e^- \rightarrow D_s^{\pm}D_s^{*\mp}, D_s^{*\mp} \rightarrow \pi^0/\gamma D_s^{\mp}$

Two ways to study $D_{(s)}$ decays:

- Single Tag (ST): reconstruct only one of the $D\bar{D}$ ($D_s^+D_s^-$)
- **Double Tag (DT):** reconstruct both of $D\bar{D}$ ($D_s^+D_s^-$)

DT provides access to absolute BFs.

DT provides clean samples for amplitude analysis.

Observation of pure W-annihilation decay

$$D_s^+ o p ar n$$

- $D_s^+ o p ar n$ is the only baryonic decay of charmed meson and can proceed only through W-annihilation process,
 - Short-distance expected: BF~10⁻⁶

PLB663(2008)326

Long-distance enhance to: BF~10⁻³

The large BF ($^{10^{-3}}$) indicates large final state interaction(FSI) effect and is important to understand the dynamical enhancement of W-annihilation.

• First evidence was reported by CLEO with a signal of 13.0 ± 3.6 events with $BF = (1.30 \pm 0.36^{+0.12}_{-0.16}) \times 10^{-3}$ (PRL100, 181802(2008)).

Observation of $D_s^+ \to p\bar{n}$

Tag modes:

Fit to the mass of missing particle
$$M_{\text{miss}}$$
 to get the DT yield.

 M_{miss} to get the DT yield.

Preliminary 20 $M_{miss}(GeV/c^2)$

Preliminary result:

$$\mathcal{B}_{D_s^+ \to p\bar{n}} = (1.22 \pm 0.10) \times 10^{-3}$$

Statistical uncertainty only,

Statistically limited. Sys. dominated by baryon PID.

- Confirm CLEO's measurement with greatly improved precision.
- Consistent with "long-distance" expectation (PLB663, 326).

Observation of pure W-annihilation decays

$$D_s^+
ightarrow \omega \pi^+, \, D_s^+
ightarrow a_0(980)\pi$$

- $D_s^+ o \omega \pi^+, \, D_s^+ o a_0(980)\pi$ can proceed only via W-annihilation process:
 - factorizable short-distance contribution is helicity suppressed,
 - non-factorizable long-distance contribution induced by FSI dominate,
 which makes the input from experimental measurement to be the unique method to determine the W-annihilation amplitude.
- With the measured BF of $D_s^+ \to \omega \pi^+$ as one of the inputs , Q. Qin et al. (PRD89, 054006) predicts:

$$\mathcal{B}(D_s^+ \to \omega K^+) = 0.6 \times 10^{-3}, A_{\rm CP}(D_s^+ \to \omega K^+) = -0.6 \times 10^{-3}$$
 (without $\rho - \omega$ mixing) $\mathcal{B}(D_s^+ \to \omega K^+) = 0.07 \times 10^{-3}, A_{\rm CP}(D_s^+ \to \omega K^+) = -2.3 \times 10^{-3}$ (with $\rho - \omega$ mixing)

Among the largest expected A_{CP} observed in charmed decays

• $D_s^+ \to \omega \pi^+$: Evidence by CLEO, BF= $(2.1\pm 0.9\pm 0.1)\times 10^{-3}$ with a signal of 6.0 ± 2.4 events. $D_s^+ \to \omega K^+$: CLEO set an UL = 2.4×10^{-3} @90% C.L. (PRD80, 051102(R) (2009))

Observation of $D_s^+ o \omega \pi^+$ and $D_s^+ o \omega K^+$

- Tag modes: $D_s^- \to K_S^0 K^-, D_s^- \to K^+ K^- \pi^-$. Total ST yield ~ 0.167M.
- Double tag: average mass of two D_s mesons closest to the PDG value.

Fit to the invariant mass $M_{\pi^+\pi^-\pi^0}$ to get the DT yield:

Preliminary results:

Consistent with CLEO's measurement, but more precise.

$$\mathcal{B}(D_s^+ \to \omega \pi^+) = (1.85 \pm 0.30_{stat.} \pm 0.19_{sys.}) \times 10^{-3}$$

$$\mathcal{B}(D_s^+ \to \omega K^+) = (1.13 \pm 0.24_{stat.} \pm 0.14_{sys.}) \times 10^{-3}$$
 First observation!

• The measurement of $D_s^+ o \omega K^+$ implies the $\rho - \omega$ mixing is negligible.

Amplitude analysis of $D_s^+ \to \pi^+ \pi^0 \eta$

Events are selected with double tag:

Tag modes:

$$D_s^- \to K_S^0 K^-, D_s^- \to K^+ K^- \pi^-, D_s^- \to K_S^0 K^- \pi^0, D_s^- \to K^+ K^- \pi^- \pi^0, D_s^- \to K_S^0 K^+ \pi^- \pi^-, D_s^- \to \pi^- \eta_{\gamma\gamma}, D_s^- \to \pi^- \eta'_{\pi^+ \pi^- \eta}$$

Data sample for amplitude analysis:

- A Multi-variate analysis is performed to suppress the background from fake η .
- The retained data sample has 1239 events with a purity of $(97.7 \pm 0.5)\%$.

Observation of $D_s^+ \to a_0(980)\pi$

Preliminary: significances, phases, and fit fractions (FFs) for intermediate processes:

Amplitude	Significance (σ)	Phase	FF
$D_s^+ \to \rho^+ \eta$	> 20	0.0 (fixed)	$0.783 \pm 0.050 \pm 0.021$
$D_s^+ \to (\pi^+\pi^0)_V \eta$	5.7	$0.612 \pm 0.172 \pm 0.342$	$0.054 \pm 0.021 \pm 0.026$
$D_s^+ \to a_0(980)\pi$	16.2	$2.794 \pm 0.087 \pm 0.041$	$0.232 \pm 0.023 \pm 0.034$

The amplitudes agree with: $A(D_s^+ \to a_0(980)^+\pi^0) = -A(D_s^+ \to a_0(980)^0\pi^+)$ within stat. uncertainty, thus we set the magnitudes to be the same with the phase difference fixed to π .

Dalitz plot & Projections:

10

Dots: data; solid: total fit; dashed: $D_s^+ \to \rho^+ \eta$; long dashed: $D_s^+ \to a_0(980)\pi$

Branching Fraction Results of $D_s^+ \to \pi^+ \pi^0 \eta$

200F

Fit to the invariant mass $M_{\pi^+\pi^0\eta}$ to get the DT yield.

Preliminary results: $\mathcal{B}(D_s^+ \to \pi^+\pi^0\eta) = (9.50 \pm 0.28_{stat.} \pm 0.41_{sys.})\% \text{ } 50$ Fit to the invariant mass $M_{\pi^+\pi^0 n}$ to

$$\mathcal{B}(D_s^+ \to \pi^+ \pi^0 \eta) = (9.50 \pm 0.28_{stat.} \pm 0.41_{sys.})\%_{\text{I}}$$

PDG value = $(9.2 \pm 1.2)\%$

BF(sub-mode
$$n$$
) = $\mathcal{B}(D_s^+ \to \pi^+ \pi^0 \eta) FF(n)$

Branching fraction (%)	B€SII Preliminary
$\mathcal{B}(D_s^+ \to \rho^+ \eta) = 7.44 \pm 0.48$	$stat. \pm 0.44 sys.$
$\mathcal{B}(D_s^+ \to a_0(980)\pi)^* = 2.20$	
$\mathcal{B}(D_s^+ \to a_0(980)^+ \pi^0)^* = 1.4$	$46 \pm 0.15_{stat.} \pm 0.22_{sys.}$
$\mathcal{B}(D_s^+ \to a_0(980)^0 \pi^+)^* = 1.4$	$46 \pm 0.15_{stat.} \pm 0.22_{sys.}$

DT yield: 2631 ± 77 **B€S** Preliminary $M_{\pi^{+}\pi^{0}n}^{1.95}$ (GeV/c²) PDG value = $(8.9 \pm 0.9)\%$ First observation!

*here, $a_0(980) \to \pi \eta$ Sys. dominated by π^0 and η reconstruction (4%).

The measured $\mathcal{B}(D_s^+ \to a_0(980)^+\pi^0)$ is larger than other measured pure W-annihilation decays ($D_s^+ \to p\bar{n}, D_s^+ \to \omega \pi^+$) by one order.

This provides theoretical challenge in understanding such a large W-annihilation contribution in $D \to SP$ (S=scalar; P=pseudo-scalar).

Amplitude analysis of $D \to K\pi\pi\pi$

- The measurement of the sub-modes in $D \to K\pi\pi\pi$ provides a window to study the decays $D \to AP$ and $D \to VV$ (A=axial-vector, V=vector), both of them are important in learning the CPV in charm decays but less effective experimental measurements.
- The knowledge of sub-modes can be widely used in many measurements:
 Branching fraction measurement
 Strong phase measurement
 CKM unitary triangle measurement
- There are seven $D \to K\pi\pi\pi$ modes:

$$D^{0} \to K^{-}\pi^{+}\pi^{+}\pi^{-}, K^{-}\pi^{+}\pi^{0}\pi^{0}, K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}, K_{S}^{0}\pi^{0}\pi^{0}\pi^{0} \text{ and } D^{+} \to K^{-}\pi^{+}\pi^{+}\pi^{0}, K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}, K_{S}^{0}\pi^{+}\pi^{0}\pi^{0}.$$

Previous measurements of sub-modes in $D^0 \to K^-\pi^+\pi^-\pi^-$, $K^0_S\pi^+\pi^-\pi^0$ and $D^+ \to K^-\pi^+\pi^+\pi^0$, $K^0_S\pi^+\pi^+\pi^-$ have been perform by Mark III and E691. Both measurements are affected by low statistics.

• In this talk, we report the amplitude analysis results of $D^0 \to K^-\pi^+\pi^+\pi^-, D^0 \to K^-\pi^+\pi^0\pi^0, D^+ \to K_s^0\pi^+\pi^+\pi^-$

Amplitude Analysis Results of $D^0 o K^-\pi^+\pi^+\pi^-$

Double tag: The D^0 is reconstructed by $K^-\pi^+\pi^+\pi^-$ with \overline{D}^0 reconstructed by $K^+\pi^-$. PRD95,072010

A sample of 15912 events with purity ~99.4% is used to perform the amplitude analysis.

The data can be described with 23 amplitudes:

Amplitude	ϕ_i	Fit fraction (%)
$D^0[S] \to \bar{K}^* \rho^0$	$2.35 \pm 0.06 \pm 0.18$	$6.5 \pm 0.5 \pm 0.8$
$D^0[P] \rightarrow \bar{K}^* \rho^0$	$-2.25 \pm 0.08 \pm 0.15$	$2.3 \pm 0.2 \pm 0.1$
$D^0[D] \to \bar{K}^* \rho^0$	$2.49 \pm 0.06 \pm 0.11$	$7.9 \pm 0.4 \pm 0.7$
$D^0 \to K^- a_1^+(1260), \ a_1^+(1260)[S] \to \rho^0 \pi^+$	0(fixed)	$53.2 \pm 2.8 \pm 4.0$
$D^0 \to K^- a_1^+(1260), a_1^+(1260)[D] \to \rho^0 \pi^+$	$-2.11 \pm 0.15 \pm 0.21$	$0.3 \pm 0.1 \pm 0.1$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[S] \to \bar{K}^{*0}\pi^-$	$1.48 \pm 0.21 \pm 0.24$	$0.1 \pm 0.1 \pm 0.1$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[D] \to \bar{K}^{*0}\pi^-$	$3.00 \pm 0.09 \pm 0.15$	$0.7 \pm 0.2 \pm 0.2$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270) \to K^-\rho^0$	$-2.46 \pm 0.06 \pm 0.21$	$3.4 \pm 0.3 \pm 0.5$
$D^0 \to (\rho^0 K^-)_A \pi^+, (\rho^0 K^-)_A [D] \to K^- \rho^0$	$-0.43 \pm 0.09 \pm 0.12$	$1.1 \pm 0.2 \pm 0.3$
$D^0 \to (K^- \rho^0)_{\rm P} \pi^+$	$-0.14 \pm 0.11 \pm 0.10$	$7.4 \pm 1.6 \pm 5.7$
$D^0 \rightarrow (K^-\pi^+)_{\text{S-wave}} \rho^0$	$-2.45 \pm 0.19 \pm 0.47$	$2.0 \pm 0.7 \pm 1.9$
$D^0 \to (K^- \rho^0)_{\rm V} \pi^+$	$-1.34 \pm 0.12 \pm 0.09$	$0.4 \pm 0.1 \pm 0.1$
$D^0 \to (\bar{K}^{*0}\pi^-)_{\rm P}\pi^+$	$-2.09 \pm 0.12 \pm 0.22$	$2.4 \pm 0.5 \pm 0.5$
$D^0 \to \bar{K}^{*0} (\pi^+ \pi^-)_{\rm S}$	$-0.17 \pm 0.11 \pm 0.12$	$2.6 \pm 0.6 \pm 0.6$
$D^0 \to (\bar{K}^{*0}\pi^-)_{\rm V}\pi^+$	$-2.13 \pm 0.10 \pm 0.11$	$0.8 \pm 0.1 \pm 0.1$
$D^0 \to ((K^- \pi^+)_{\text{S-wave}} \pi^-)_{\text{A}} \pi^+$	$-1.36 \pm 0.08 \pm 0.37$	$5.6 \pm 0.9 \pm 2.7$
$D^0 \to K^-((\pi^+\pi^-)_{\rm S}\pi^+)_{\rm A}$	$-2.23 \pm 0.08 \pm 0.22$	$13.1 \pm 1.9 \pm 2.2$
$D^0 \to (K^- \pi^+)_{\text{S-wave}} (\pi^+ \pi^-)_{\text{S}}$	$-1.40 \pm 0.04 \pm 0.22$	$16.3 \pm 0.5 \pm 0.6$
$D^{0}[S] \to (K^{-}\pi^{+})_{V}(\pi^{+}\pi^{-})_{V}$	$1.59 \pm 0.13 \pm 0.41$	$5.4 \pm 1.2 \pm 1.9$
$D^0 \to (K^- \pi^+)_{\text{S-wave}} (\pi^+ \pi^-)_{\text{V}}$	$-0.16 \pm 0.17 \pm 0.43$	$1.9 \pm 0.6 \pm 1.2$
$D^0 \to (K^- \pi^+)_{\rm V} (\pi^+ \pi^-)_{\rm S}$	$2.58 \pm 0.08 \pm 0.25$	$2.9 \pm 0.5 \pm 1.7$
$D^0 \to (K^- \pi^+)_{\rm T} (\pi^+ \pi^-)_{\rm S}$	$-2.92 \pm 0.14 \pm 0.12$	$0.3 \pm 0.1 \pm 0.1$
$D^0 \to (K^- \pi^+)_{\text{S-wave}} (\pi^+ \pi^-)_{\text{T}}$	$2.45 \pm 0.12 \pm 0.37$	$0.5 \pm 0.1 \pm 0.1$

Amplitude Analysis Results of $D^0 o K^-\pi^+\pi^+\pi^-$

PRD95,072010

Fit projections:

Points with error bars: data, curves: fit, red histograms: background.

For the two identical π^+ , we require $m(\pi_1^+\pi^-) > m(\pi_2^+\pi^-)$.

Branching Fraction Results of $D^0 o K^-\pi^+\pi^+\pi^-$

Results of branching fractions for different components:

Component	Branching fraction (%)	PDG value (%)
$D^0 \to \bar{K}^{*0} \rho^0$	$0.99 \pm 0.04 \pm 0.04 \pm 0.03$	1.05 ± 0.23
$D^0 \to K^- a_1^+ (1260) (\rho^0 \pi^+)$	$4.41 \pm 0.22 \pm 0.30 \pm 0.13$	3.6 ± 0.6
$D^0 \to K_1^-(1270)(\bar{K}^{*0}\pi^-)\pi^+$	$0.07 \pm 0.01 \pm 0.02 \pm 0.00$	0.29 ± 0.03
$D^0 \to K_1^-(1270)(K^-\rho^0)\pi^+$	$0.27 \pm 0.02 \pm 0.04 \pm 0.01$	
$D^0 \to K^- \pi^+ \rho^0$	$0.68 \pm 0.09 \pm 0.20 \pm 0.02$	0.51 ± 0.23
$D^0 \to \bar{K}^{*0} \pi^+ \pi^-$	$0.57 \pm 0.03 \pm 0.04 \pm 0.02$	0.99 ± 0.23
$D^0 \to K^-\pi^+\pi^+\pi^-$	$1.77 \pm 0.05 \pm 0.04 \pm 0.05$	1.88 ± 0.26
	<u> </u>	
stat	. uncertainty from FF	
	sys. uncertainty from FF	
	uncertainties related to BF($D^0 \to K^-\pi^+\pi^+\pi^-$) in PDO	

Amplitude Analysis Results of $D^0 o K^-\pi^+\pi^0\pi^0$

Double tag: The D^0 is reconstructed by $K^-\pi^+\pi^0\pi^0$ with \overline{D}^0 reconstructed by $K^+\pi^-$.

A sample of 5950 events with purity ~99% is used to perform the amplitude analysis.

The data can be described with 26 amplitudes:

escribed with 26 amplitudes:		
Amplitude mode	$\mathbf{FF}(\%)$	Phase (ϕ) ESII Preliminary
D o SS		•
$D \to (K^- \pi^+)_{S\text{-wave}} (\pi^0 \pi^0)_S$		$-0.75 \pm 0.15 \pm 0.47$
$D \to (K^-\pi^0)_{S\text{-wave}}(\pi^+\pi^0)_S$	$4.18 \pm 1.02 \pm 1.77$	$-2.90 \pm 0.19 \pm 0.47$
$D \to AP, A \to VP$		
$D \to K^- a_1(1260)^+, \rho^+ \pi^0[S]$	$28.36 \pm 2.50 \pm 3.53$	
$D \to K^- a_1(1260)^+, \rho^+ \pi^0 [D]$	$0.68 \pm 0.29 \pm 0.30$	$-2.05 \pm 0.17 \pm 0.25$
$D \to K_1(1270)^- \pi^+, K^{*-} \pi^0[S]$		$1.84 \pm 0.34 \pm 0.43$
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[S]$	$0.39 \pm 0.18 \pm 0.30$	$-1.55 \pm 0.20 \pm 0.26$
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[D]$	$0.11 \pm 0.11 \pm 0.13$	$-1.35 \pm 0.43 \pm 0.48$
$D \to K_1(1270)^0 \pi^0, K^- \rho^+ [S]$	$2.71 \pm 0.38 \pm 0.29$	$-2.07 \pm 0.09 \pm 0.20$
$D \to (K^{*-}\pi^{0})_{A}\pi^{+}, K^{*-}\pi^{0}[S]$	$1.85 \pm 0.62 \pm 1.11$	$1.93 \pm 0.10 \pm 0.15$
$D \to (K^{*0}\pi^{0})_{A}\pi^{0}, K^{*0}\pi^{0}[S]$	$3.13 \pm 0.45 \pm 0.58$	$0.44 \pm 0.12 \pm 0.21$
$D \to (K^{*0}\pi^{0})_{A}\pi^{0}, K^{*0}\pi^{0}[D]$	$0.46 \pm 0.17 \pm 0.29$	$-1.84 \pm 0.26 \pm 0.42$
$D \to (K^{*-}\pi^{0})_{A}\pi^{+}, K^{*-}\pi^{0}[S]$ $D \to (K^{*0}\pi^{0})_{A}\pi^{0}, K^{*0}\pi^{0}[S]$ $D \to (K^{*0}\pi^{0})_{A}\pi^{0}, K^{*0}\pi^{0}[D]$ $D \to (\rho^{+}K^{-})_{A}\pi^{0}, K^{-}\rho^{+}[D]$	$0.75 \pm 0.40 \pm 0.60$	$0.64 \pm 0.36 \pm 0.53$
$D \to AP, A \to SP$		
$D \to ((K^-\pi^+)_{S\text{-wave}}\pi^0)_A\pi^0$	$1.99 \pm 1.08 \pm 1.55$	$-0.02 \pm 0.25 \pm 0.53$
$D \to VS$		
$D \to (K^-\pi^0)_{S\text{-wave}}\rho^+$		$-2.39 \pm 0.11 \pm 0.35$
$D \to K^{*-}(\pi^+\pi^0)_S$	$0.80 \pm 0.38 \pm 0.26$	$1.59 \pm 0.19 \pm 0.24$
$D \to K^{*0} (\pi^0 \pi^0)_S$	$0.12 \pm 0.27 \pm 0.27$	$1.45 \pm 0.48 \pm 0.51$
$D \to VP, V \to VP$		$0.52 \pm 0.12 \pm 0.17$
$D \to (K^{*-}\pi^+)_V \pi^0$	$2.25 \pm 0.43 \pm 0.45$	$0.52 \pm 0.12 \pm 0.17$
$D \to VV$		
$D[S] \rightarrow K^{*-}\rho^{+}$	$5.15 \pm 0.75 \pm 1.28$	$1.24 \pm 0.11 \pm 0.23$
$D[P] \rightarrow K^{*-}\rho^{+}$	$3.25 \pm 0.55 \pm 0.41$	$-2.89 \pm 0.10 \pm 0.18$
$D[D] \rightarrow K^{*-}\rho^{+}$	$10.90 \pm 1.53 \pm 2.36$	
$D[P] \to (K^- \pi^0)_V \rho^+$	$0.36 \pm 0.19 \pm 0.27$	$-0.94 \pm 0.19 \pm 0.28$
$D[D] \rightarrow (K^-\pi^0)_V \rho^+$	$2.13 \pm 0.56 \pm 0.92$	$-1.93 \pm 0.22 \pm 0.25$
$D[D] \to K^{*-}(\pi^+\pi^0)_V$	$1.66 \pm 0.52 \pm 0.61$	$-1.17 \pm 0.20 \pm 0.39$
$D[S] \to (K^- \pi^0)_V (\pi^+ \pi^0)_V$	$5.17 \pm 1.91 \pm 1.82$	$-1.74 \pm 0.20 \pm 0.31$
$D \to TS$	0.00 0.01 0.02	0.00 0.01 0.00
$D \to (K^-\pi^+)_{S\text{-wave}}(\pi^0\pi^0)_T$	$0.30 \pm 0.21 \pm 0.32$	$-2.93 \pm 0.31 \pm 0.82$
$D \to (K^- \pi^0)_{S\text{-wave}} (\pi^+ \pi^0)_T$	$0.14 \pm 0.12 \pm 0.10$	$2.23 \pm 0.38 \pm 0.65$

Amplitude Analysis Results of $D^0 o K^-\pi^+\pi^0\pi^0$

Fit projections:

Points with error bars: data, red histograms: fit.

Branching Fraction Results of $D^0 o K^-\pi^+\pi^0\pi^0$

Fits to $M_{\rm BC}$ distributions of DT and ST data:

Beam-Constrained Mass:
$$M_{\rm BC} = \sqrt{E_{\rm beam}^2 - |\vec{p}_D|^2}$$

Signal: $M_{\rm BC}$ peaks at D mass

DT yield = 6101 ± 83 ; ST yield = 534581 ± 769 .

The amplitude analysis result is used to determine the detection efficiency.

Preliminary result:

$$\mathcal{B}(D^0 \to K^- \pi^+ \pi^0 \pi^0) = (8.98 \pm 0.13_{\text{stat.}} \pm 0.40_{\text{sys.}})\%$$

First measurement

Amplitude Analysis Results of $D^+ o K^0_S \pi^+ \pi^+ \pi^-$

Double tag: The D^+ is reconstructed by $K_S^0 \pi^+ \pi^+ \pi^-$ with D^- reconstructed by $K^+ \pi^- \pi^-$.

A sample of 4559 events with purity ~99% is used to perform the amplitude analysis.

The data can be described with 12 amplitudes:

		B€SⅢ Preliminary
Amplitude	ϕ	Fit fraction
$D^+ \to K_S^0 a_1(1260)^+, a_1(1260)^+ \to \rho^0 \pi^+[S]$	0.000(fixed)	$0.567 \pm 0.020 \pm 0.044$
$D^+ \to K_S^0 a_1(1260)^+, a_1(1260)^+ \to f_0(500)\pi^+$	$-2.023 \pm 0.068 \pm 0.113$	$0.050 \pm 0.006 \pm 0.007$
$D^+ \to \bar{K}_1(1400)^0 \pi^+, \bar{K}_1(1400)^0 \to K^{*-} \pi^+[S]$	$-2.714 \pm 0.038 \pm 0.051$	$0.380 \pm 0.013 \pm 0.014$
$D^+ \to \bar{K}_1(1400)^0 \pi^+, \bar{K}_1(1400)^0 \to K^{*-} \pi^+ [D]$	$3.431 \pm 0.137 \pm 0.117$	$0.015 \pm 0.004 \pm 0.005$
$D^+ \to \bar{K}_1(1270)^0 \pi^+, \bar{K}_1(1270)^0 \to K_S^0 \rho^0[S]$	$-0.418 \pm 0.070 \pm 0.087$	$0.036 \pm 0.004 \pm 0.002$
$D^+ \to \bar{K}(1460)^0 \pi^+, \bar{K}(1460)^0 \to K_S^0 \rho^0$	$-1.850 \pm 0.120 \pm 0.223$	$0.014 \pm 0.004 \pm 0.003$
$D^+ \to (K_S^0 \rho^0)_A [D] \pi^+$	$2.328 \pm 0.097 \pm 0.068$	$0.011 \pm 0.003 \pm 0.002$
$D^+ \to K_S^0(\rho^0 \pi^+)_P$	$1.656 \pm 0.083 \pm 0.056$	$0.031 \pm 0.004 \pm 0.010$
$D^+ \to (K^{*-}\pi^+)_A[S]\pi^+$	$1.962 \pm 0.047 \pm 0.073$	$0.132 \pm 0.011 \pm 0.011$
$D^+ \to (K^{*-}\pi^+)_A[D]\pi^+$	$0.989 \pm 0.158 \pm 0.229$	$0.013 \pm 0.004 \pm 0.004$
$D^+ \to (K_S^0(\pi^+\pi^-)_S)_A\pi^+$	$-2.935 \pm 0.060 \pm 0.125$	$0.051 \pm 0.004 \pm 0.003$
$D^+ \to ((K_S^0 \pi^-)_S \pi^+)_P \pi^+$	$1.864 \pm 0.069 \pm 0.288$	$0.022 \pm 0.003 \pm 0.003$

Amplitude Analysis Results of $D^+ o K_S^0 \pi^+ \pi^+ \pi^-$

Fit projections:

Points with error bars: data, red histograms: fit, green histograms: background estimated from MC.

For the two identical π^+ , we require $m(\pi_1^+\pi^-) < m(\pi_2^+\pi^-)$.

Branching fraction results of $D^+ o K^0_S \pi^+ \pi^+ \pi^-$

The preliminary results of branching fractions for different components:

	B€SII Preliminary
Component	Branching fraction (%)
$D^+ \to K_S^0 a_1(1260)^+ (\rho^0 \pi^+)$	$1.684 \pm 0.059 \pm 0.131 \pm 0.062$
$D^+ \to K_S^0 a_1(1260)^+ (f_0(500)\pi^+)$	$0.149 \pm 0.018 \pm 0.021 \pm 0.006$
$D^+ \to \tilde{K}_1(1400)^0 (K^{*-}\pi^+)\pi^+$	$1.105 \pm 0.045 \pm 0.048 \pm 0.041$
$D^+ \to \bar{K}_1(1270)^0 (K_S^0 \rho^0) \pi^+$	$0.107 \pm 0.012 \pm 0.006 \pm 0.004$
$D^+ \to \bar{K}(1460)^0 (K_S^0 \rho^0) \pi^+$	$0.042 \pm 0.012 \pm 0.009 \pm 0.002$
$D^+ \rightarrow K_S^0 \pi^+ \tilde{\rho}^0$	$0.131 \pm 0.015 \pm 0.015 \pm 0.005$
$D^+ \to K^{*-} \pi^+ \pi^+$	$0.413 \pm 0.036 \pm 0.059 \pm 0.015$
$D^+ \to K_S^0 \pi^+ \pi^+ \pi^-$	$0.220 \pm 0.015 \pm 0.024 \pm 0.008$
	<u> </u>
	stat. uncertainty from FF
	sys. uncertainty from FF
	uncertainties related to BF($D^+ o K_S^0 \pi^+ \pi^+ \pi^-$) in PDG

• The measurements of the decays with $K_1(1270)$ and $K_1(1400)$ involved provide some experimental information in understanding the mixture of the two excited Kaons. (PLB707,116).

Measurement of the Branching Fractions of $oldsymbol{D} o oldsymbol{PP}$

- The analysis of $D \to PP$ modes provides materials for the study of SU(3) breaking effect.
- Most of the $D \to PP$ decays have been studied by CLEO in 2010 , other measurements come from Belle , BABAR and CDF , etc.

BFs of $D \rightarrow PP$ are obtained using ST method:

Mode	\mathcal{B} (×10 ⁻³)	$\mathcal{B}_{\text{PDG}}~(\times 10^{-3})$
$D^+ o \pi^+ \pi^0$	$1.259 \pm 0.033 \pm 0.023$	1.24 ± 0.06
$D^+ o K^+ \pi^0$	$0.232 \pm 0.021 \pm 0.006$	0.189 ± 0.025
$D^+ o\pi^+\eta$	$3.790 \pm 0.070 \pm 0.068$	3.66 ± 0.22
$D^+ o K^+ \eta$	$0.151 \pm 0.025 \pm 0.014$	0.112 ± 0.018
$D^+ o \pi^+ \eta^\prime$	$5.12 \pm 0.14 \pm 0.024$	4.84 ± 0.31
$D^+ o K^+ \eta^\prime$	$0.164 \pm 0.051 \pm 0.024$	0.183 ± 0.023
$D^+ o K_S^0 \pi^+$	$15.91 \pm 0.06 \pm 0.30$	15.3 ± 0.6
$D^+ \rightarrow K_S^0 K^+$	$3.183 \pm 0.029 \pm 0.060$	2.95 ± 0.15
$D^0 ightarrow \pi^+\pi^-$	$1.508 \pm 0.018 \pm 0.022$	1.421 ± 0.025
$D^0 \rightarrow K^+ K^-$	$4.233 \pm 0.021 \pm 0.064$	4.01 ± 0.07
$D^0 o K^\mp \pi^\pm$	$38.98 \pm 0.06 \pm 0.51$	39.4 ± 0.4
$D^0 o K_S^0 \pi^0$	$12.39 \pm 0.06 \pm 0.27$	12.0 ± 0.4
$D^0 o K_S^0 \eta$	$5.13 \pm 0.07 \pm 0.12$	4.85 ± 0.30
$D^0 o K_S^0 \eta'$	$9.49 \pm 0.20 \pm 0.36$	9.5 ± 0.5

The results from BESIII are consistent with the world average values within uncertainties. The BFs of $D^+ \to \pi^+ \pi^0, K^+ \pi^0, \pi^+ \eta, \pi^+ \eta', K_S^0 \pi^+, K_S^0 K^+$ and $D^0 \to K_S^0 \pi^0, K_S^0 \eta, K_S^0 \eta'$ are determined with improved precision.

Summary

ESII provides large data samples close to charm related threshold to study the $D_{(s)}$ hadronic decays:

- Observation of pure W-annihilation decays $D_s^+ \to p\bar{n}, D_s^+ \to \omega \pi^+, D_s^+ \to a_0(980)\pi$
 - ightharpoonup Our preliminary results on $D_s^+ o p \bar n, D_s^+ o \omega \pi^+$ confirm CLEO's measurements with greatly improved precision.
 - \blacktriangleright Our preliminary results on $D_s^+ \to a_0(980)\pi$ are larger than other measured pure W-annihilation decays ($D_s^+ \to p\bar{n}, D_s^+ \to \omega\pi^+$) by one order.
- ullet Amplitude analysis of $D o K\pi\pi\pi$:
 - \triangleright $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$ is published in PRD95,072010.
 - ► Preliminary results of $D^0 \to K^- \pi^+ \pi^0 \pi^0$, $D^+ \to K_S^0 \pi^+ \pi^+ \pi^-$ are obtained. $\mathcal{B}(D^0 \to K^- \pi^+ \pi^0 \pi^0) = (8.98 \pm 0.13_{\text{stat.}} \pm 0.40_{\text{sys.}})\%$
- Branching fractions of $D \to PP$:

The BFs of 14 decay modes are published in PRD97,072004.

More measurements in $D_{(s)}$ hadronic decays are coming.