Testing discrete symmetries with neutral kaons at KLOE-2

Antonio Di Domenico Dipartimento di Fisica, Sapienza Università di Roma and INFN sezione di Roma, Italy

on behalf of the KLOE-2 collaboration

The KLOE detector at the Frascati φ-factory DAΦNE

DAFNE collider

Integrated luminosity (KLOE)

Total KLOE $\int \mathcal{L} dt \sim 2.5 \text{ fb}^{-1}$ (2001 - 05) $\rightarrow \sim 2.5 \times 10^9 \text{ K}_S \text{K}_L \text{ pairs}$

KLOE detector

Lead/scintillating fiber calorimeter drift chamber 4 m diameter × 3.3 m length helium based gas mixture

KLOE-2 at DAФNE

LYSO Crystal w SiPM Low polar angle

Tungsten / Scintillating Tiles w SiPM Quadrupole Instrumentation

Inner Tracker – 4 layers of Cylindrical GEM detectors Improve track and vtx reconstr.
First CGEM in HEP expt.

Scintillator hodoscope +PMTs

calorimeters LYSO+SiPMs at ~ 1 m from IP

KLOE-2 run

KLOE-2 goal accomplished: Lacquired > 5 fb⁻¹ => L delivered > ~ 6.2 fb⁻¹

KLOE-2 run

KLOE-2 goal accomplished: Lacquired > 5 fb⁻¹ => L delivered > ~ 6.2 fb⁻¹

KLOE-2 data-taking closing ceremony **KLOE-2** run 30 March 2018 INFN - Laboratori Nazionali di Frascati delivered: 6.8 fb⁻¹ see Gauzzi's talk in Detector session acquired: 5.5 fb⁻¹ Laboratori Naziol di Frascati 02/17 (Month/Year) $> 5 \text{ fb}^{-1} => L \text{ delivered} > \sim 6.2 \text{ fb}^{-1}$ KLOE-2 goal accomplished

KLOE-2 goal accomplished: Lacquired > 5 fb⁻¹ => L delivered > ~ 6.2 fb⁻¹

List of KLOE CP/CPT tests with neutral kaons

Mode	Test	Param.	KLOE measurement
$K_L \rightarrow \pi^+\pi^-$	СР	BR	$(1.963 \pm 0.012 \pm 0.017) \times 10^{-3}$
$K_S \rightarrow 3\pi^0$	СР	BR	< 2.6 × 10 ⁻⁸
K _S →πeν	CP	$\mathbf{A_{S}}$	$(1.5 \pm 10) \times 10^{-3}$
$K_S \rightarrow \pi e \nu$	CPT	Re(x_)	$(-0.8 \pm 2.5) \times 10^{-3}$
K _S →πeν	СРТ	Re(y)	$(0.4 \pm 2.5) \times 10^{-3}$
All K _{S,L} BRs, η's etc	СР	Re(ε)	$(159.6 \pm 1.3) \times 10^{-5}$
(unitarity)	СРТ	Im(δ)	$(0.4 \pm 2.1) \times 10^{-5}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & QM	α	$(-10 \pm 37) \times 10^{-17} \text{ GeV}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & QM	β	$(1.8 \pm 3.6) \times 10^{-19} \text{ GeV}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & QM	γ	$(0.4 \pm 4.6) \times 10^{-21} \text{ GeV}$
			compl. pos. hyp.
			$(0.7 \pm 1.2) \times 10^{-21} \text{ GeV}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & QM	Re(ω)	$(-1.6 \pm 2.6) \times 10^{-4}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & QM	Im(ω)	$(-1.7 \pm 3.4) \times 10^{-4}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & Lorentz	Δa_0	$(-6.2 \pm 8.8) \times 10^{-18} \text{ GeV}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & Lorentz	Δa _Z	$(-0.7 \pm 1.0) \times 10^{-18} \text{ GeV}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & Lorentz	Δa _X	$(3.3 \pm 2.2) \times 10^{-18} \text{ GeV}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & Lorentz	$\Delta a_{ m Y}$	$(-0.7 \pm 2.0) \times 10^{-18} \text{ GeV}$

KLOE-2 Physics

KAON Physics:

- CPT and QM tests with kaon interferometry
- Direct T and CPT tests using entanglement
- CP violation and CPT test: $K_S \text{->} 3\pi^0$ direct measurement of $\text{Im}(\epsilon'/\epsilon)$ (lattice calc. improved) •
- CKM Vus: K_S semileptonic decays and A_S (also CP and CPT test) $K\mu 3$ form factors, KI3 radiative corrections
- χ pT : K_S -> $\gamma\gamma$
- Search for rare K_S decays

Hadronic cross section

- Measurement of a_{μ}^{HLO} in the space-like region using Bhabha process
- ISR studies with 3π , 4π final states
- F_{π} with increased statistics

EPJC (2010) 68, 619, EPJ WoC 166 (2018)

Dark forces:

- Improve limits on:
 Uγ associate production
 e+e- → Uγ → ππγ, μμγ
- Higgstrahlung e+e-→ Uh'→µ+µ- + miss. energy
- Leptophobic B boson search $\phi \rightarrow \eta B$, $B \rightarrow \pi^0 \gamma$, $\eta \rightarrow \gamma \gamma$ $\eta \rightarrow B \gamma$, $B \rightarrow \pi^0 \gamma$, $\eta \rightarrow \pi^0 \gamma \gamma$
- Search for U invisible decays

Light meson Physics:

- η decays, ω decays, TFF $\phi \rightarrow \eta e^+e^-$
- C,P,CP violation: improve limits on $\eta \to \gamma \gamma \gamma, \, \pi^+\pi^-, \, \pi^0\pi^0, \, \pi^0\pi^0 \gamma$
- improve $\eta \rightarrow \pi^+\pi^-e^+e^-$
- χpT : $\eta \to \pi^0 \gamma \gamma$
- Light scalar mesons: $\phi \to K_S K_S \gamma$
- $\gamma\gamma$ Physics: $\gamma\gamma \to \pi^0$ and π^0 TFF
- light-by-light scattering
- axion-like particles

- 1. K_S semileptonic charge asymmetry
- 2. Direct test of T and CPT in neutral kaon transitions
- 3. Search for the CP violating $K_s \rightarrow \pi^0 \pi^0 \pi^0$ decay

K_S and K_L semileptonic charge asymmetry

$$A_{S,L} = \frac{\Gamma(K_{S,L} \to \pi^- e^+ v) - \Gamma(K_{S,L} \to \pi^+ e^- \overline{v})}{\Gamma(K_{S,L} \to \pi^- e^+ v) + \Gamma(K_{S,L} \to \pi^+ e^- \overline{v})} = 2\Re \varepsilon \pm 2\Re \delta - 2\Re y \pm 2\Re x_{-}$$

T CPT viol. in mixing $\downarrow \qquad \downarrow \qquad \qquad \downarrow$ $= 2\Re \varepsilon \pm 2\Re \delta - 2\Re y \pm 2\Re x_{-}$ $\uparrow \qquad \uparrow \qquad \uparrow \qquad \qquad \uparrow$ CPTV in $\Delta S = \Delta Q \quad \Delta S \neq \Delta Q \text{ decays}$

 $A_{S,L} \neq 0$ signals CP violation $A_S \neq A_I$ signals CPT violation

$$A_L = (3.322 \pm 0.058 \pm 0.047) \times 10^{-3}$$

KTEV PRL88,181601(2002)

$$A_S = (1.5 \pm 9.6 \pm 2.9) \times 10^{-3}$$

KLOE PLB 636(2006) 173

Data sample: L=410 pb⁻¹

$$A_S - A_L = 4 \Re \delta + \Re x_ \longrightarrow$$
 $\Re x_- = (-0.8 \pm 2.5) \times 10^{-3}$

$$A_S + A_L = 4 \Re \varepsilon - \Re y \qquad \longrightarrow \qquad \Re y = (0.4 \pm 2.5) \times 10^{-3}$$

input from other experiments

CPT &
$$\Delta S = \Delta Q$$
 viol.

CPT viol.

KLOE PLB 636(2006) 173

$$|i\rangle \propto [|K_S\rangle |K_L\rangle - |K_L\rangle |K_S\rangle]$$

 K_S tagged by K_L interaction in EmC Efficiency ~ 30% (largely geometrical)

- Pure K_S sample selected exploiting entanglement
- L=1.6 fb⁻¹; ~ 4 × statistics w.r.t. previous measurement
- Pre-selection: 1 vtx close to IP with M_{inv}(π,π)<M_K
 + K_I crash
- PID with time of flight technique

$$\delta_{t}(X) = (t_{cl} - T_{0}) - \frac{L}{c\beta(X)} \qquad ; \qquad X = e, \pi$$

$$\delta_{t}(X,Y) = \delta_{t}(X)_{1} - \delta_{t}(Y)_{2}$$

- Fit of M²(e) distribution varying MC normalizations of signal and bkg contributions.
- Total χ^2 /ndf = 118/109
- Total efficiencies: ϵ^+ =(7.39±0.03)% and ϵ^- =(7.81±0.03)%
- track to EMC cluster and TOF efficiency correction from control sample

- Fit of M²(e) distribution varying MC normalizations of signal and bkg contributions.
- Total χ^2 /ndf = 118/109
- Total efficiencies: ϵ^+ =(7.39±0.03)% and ϵ^- =(7.81±0.03)%
- track to EMC cluster and TOF efficiency correction from control sample

$$A_{S} = \frac{N(\pi^{-}e^{+})/\varepsilon^{+} - N(\pi^{+}e^{-})/\varepsilon^{-}}{N(\pi^{-}e^{+})/\varepsilon^{+} + N(\pi^{+}e^{-})/\varepsilon^{-}}$$

Systematic uncertainties on A_S

Contribut	Systematic uncertainty (10^{-3})	
Trigger and event classification	σ_{TEC}	0.28
Tagging and preselection	$E_{clu}(crash)$	0.55
11	β^*	0.67
"	Z _{vtx}	0.01
11	$ ho_{ extsf{vtx}}$	0.05
11	α	0.46
"	$M_{inv}(\pi,\pi)$	0.20
Time of flight selection	$\delta_t(\pi,\pi)$	0.71
"	$\delta_t(e,\pi)$ vs $\delta_t(\pi,e)$	0.87
"	$\delta_t(e)$ vs $\delta_t(\pi)$	1.82
Momenta smearing	σ_{MS}	0.58
Fit procedure	σ_{HBW}	0.61
"	Fit range	0.49
Total	2.6	

Data sample: L=1.7 fb⁻¹

KLOE (2018)

$$A_S = (-4.8 \pm 5.6 \pm 2.6) \times 10^{-3}$$

Combination KLOE(2006)+KLOE (2018)

$$A_S = (-3.8 \pm 5.0 \pm 2.6) \times 10^{-3}$$

arXiv:1806.08654 [hep-ex]

Submitted to JHEP

It will improve the CPT test ($\text{Im}\delta$) using Bell-Steinberger relationship

with KLOE-2 data: $\delta A_S(stat) \rightarrow \sim 3 \times 10^{-3}$

$$A_S - A_L = 4\Re \delta + \Re x_{-}$$

$$\Re x_{-} = (-2.0 \pm 1.4) \times 10^{-3}$$

CPT &
$$\Delta S = \Delta Q$$
 viol.

$$A_S + A_L = 4 \Re \varepsilon - \Re y$$

$$\Re y = (1.7 \pm 1.4) \times 10^{-3}$$

input from other experiments

Data sample: L=1.7 fb⁻¹

KLOE (2018)

$$A_S = (-4.8 \pm 5.6 \pm 2.6) \times 10^{-3}$$

Combination KLOE(2006)+KLOE (2018)

$$A_S = (-3.8 \pm 5.0 \pm 2.6) \times 10^{-3}$$

arXiv:1806.08654 [hep-ex]

Submitted to JHEP

It will improve the CPT test ($\text{Im}\delta$) using Bell-Steinberger relationship

with KLOE-2 data: $\delta A_S(stat) \rightarrow \sim 3 \times 10^{-3}$

$$A_S - A_L = 4 \Re \delta + \Re x_{-}$$

$$\Re x_{-} = (-2.0 \pm 1.4) \times 10^{-3}$$

CPT &
$$\Delta S = \Delta Q$$
 viol.

$$A_S + A_L = 4 \Re \varepsilon - \Re y$$

$$\Re y = (1.7 \pm 1.4) \times 10^{-3}$$

CPT viol.

input from other experiments

$$|i\rangle = \frac{1}{\sqrt{2}} \Big[|K^{0}(\vec{p})\rangle |\overline{K}^{0}(-\vec{p})\rangle - |\overline{K}^{0}(\vec{p})\rangle |K^{0}(-\vec{p})\rangle \Big]$$

$$= \frac{1}{\sqrt{2}} \Big[|K_{+}(\vec{p})\rangle |K_{-}(-\vec{p})\rangle - |K_{-}(\vec{p})\rangle |K_{+}(-\vec{p})\rangle \Big]$$

- decay as filtering measurement
- •entanglement → preparation of state

$$|i\rangle = \frac{1}{\sqrt{2}} \Big[|K^{0}(\vec{p})\rangle | \overline{K}^{0}(-\vec{p})\rangle - |\overline{K}^{0}(\vec{p})\rangle |K^{0}(-\vec{p})\rangle \Big]$$
$$= \frac{1}{\sqrt{2}} \Big[|K_{+}(\vec{p})\rangle |K_{-}(-\vec{p})\rangle - |K_{-}(\vec{p})\rangle |K_{+}(-\vec{p})\rangle \Big]$$

- decay as filtering measurement
- •entanglement → preparation of state

$$|i\rangle = \frac{1}{\sqrt{2}} \Big[|K^{0}(\vec{p})\rangle | \overline{K}^{0}(-\vec{p})\rangle - |\overline{K}^{0}(\vec{p})\rangle |K^{0}(-\vec{p})\rangle \Big]$$
$$= \frac{1}{\sqrt{2}} \Big[|K_{+}(\vec{p})\rangle |K_{-}(-\vec{p})\rangle - |K_{-}(\vec{p})\rangle |K_{+}(-\vec{p})\rangle \Big]$$

- decay as filtering measurement
- •entanglement → preparation of state

$$|i\rangle = \frac{1}{\sqrt{2}} \Big[|K^{0}(\vec{p})\rangle | \overline{K}^{0}(-\vec{p})\rangle - |\overline{K}^{0}(\vec{p})\rangle |K^{0}(-\vec{p})\rangle \Big]$$
$$= \frac{1}{\sqrt{2}} \Big[|K_{+}(\vec{p})\rangle |K_{-}(-\vec{p})\rangle - |K_{-}(\vec{p})\rangle |K_{+}(-\vec{p})\rangle \Big]$$

- decay as filtering measurement
- •entanglement → preparation of state

•EPR correlations at a φ-factory can be exploited to study transitions involving orthogonal "CP states" K₊ and K₋

$$|i\rangle = \frac{1}{\sqrt{2}} \Big[|K^{0}(\vec{p})\rangle |\overline{K}^{0}(-\vec{p})\rangle - |\overline{K}^{0}(\vec{p})\rangle |K^{0}(-\vec{p})\rangle \Big]$$
$$= \frac{1}{\sqrt{2}} \Big[|K_{+}(\vec{p})\rangle |K_{-}(-\vec{p})\rangle - |K_{-}(\vec{p})\rangle |K_{+}(-\vec{p})\rangle \Big]$$

- decay as filtering measurement
- •entanglement → preparation of state

Note: CP and T conjugated process
$$\overline{K}^0 \to K_ K_- \to K^0$$
 $\downarrow^{\mathsf{K}_+}$ \downarrow^{Q}

CPT-conjugated process

Reference	T-conjug.	CP-conjug.	CPT-conjug.
$K^0 \to K_+$	$K_+ \to K^0$	$\bar{K}^0 o K_+$	$K_+ \to \bar{K}^0$
$K^0 \to K$	$K \to K^0$	$ar K^0 o K$	$K o ar K^0$
$K_+ o ar K^0$	$ar K^0 o K_+$	$K_+ \to K^0$	$K^0 o K_+$
$K o ar K^0$	$ar K^0 o K$	$K o K^0$	$K^0 o K$

Unique direct CPT and T test in kaon transitions, theoretically very clean and model independent. Negligible spurious effects from $\Delta S \neq \Delta Q$ or direct CP violation.

One can define the following ratios of probabilities:

$$R_{1,T}(\Delta t) = P \left[K_{+}(0) \to \bar{K}^{0}(\Delta t) \right] / P \left[\bar{K}^{0}(0) \to K_{+}(\Delta t) \right]$$

$$R_{2,T}(\Delta t) = P \left[K^{0}(0) \to K_{-}(\Delta t) \right] / P \left[K_{-}(0) \to K^{0}(\Delta t) \right]$$

$$R_{3,T}(\Delta t) = P \left[K_{+}(0) \to K^{0}(\Delta t) \right] / P \left[K^{0}(0) \to K_{+}(\Delta t) \right]$$

$$R_{4,T}(\Delta t) = P \left[\bar{K}^{0}(0) \to K_{-}(\Delta t) \right] / P \left[K_{-}(0) \to \bar{K}^{0}(\Delta t) \right]$$

$$R_{1,\text{CPT}}(\Delta t) = P \left[K_{+}(0) \to \bar{K}^{0}(\Delta t) \right] / P \left[K^{0}(0) \to K_{+}(\Delta t) \right]$$

$$R_{2,\text{CPT}}(\Delta t) = P \left[K^{0}(0) \to K_{-}(\Delta t) \right] / P \left[K_{-}(0) \to \bar{K}^{0}(\Delta t) \right]$$

$$R_{3,\text{CPT}}(\Delta t) = P \left[K_{+}(0) \to K^{0}(\Delta t) \right] / P \left[\bar{K}^{0}(0) \to K_{+}(\Delta t) \right]$$

$$R_{4,\text{CPT}}(\Delta t) = P \left[\bar{K}^{0}(0) \to K_{-}(\Delta t) \right] / P \left[K_{-}(0) \to K^{0}(\Delta t) \right]$$

CPT

Any deviation from $R_{i,T/CPT}$ =1 constitutes a violation of T/CPT symmetry

J. Bernabeu, A.D.D., P. Villanueva JHEP 10 (2015) 139, NPB 868 (2013) 102, A.D.D., APPB 48 (2017) 1919

- First test of T and CPT in transitions with neutral kaons (L=1.7 fb⁻¹)
- $\phi \rightarrow K_S K_I \rightarrow \pi e^{\pm} v \ 3\pi^0 \ and \ \pi^+\pi^- \ \pi e^{\pm} v$
- Selection efficiencies estimated from data with 4 independent control samples

 $\Delta t [\tau_s]$

CPT test

$$R_{2,CPT}(\Delta t) = \frac{P[K^{0}(0) \to K_{-}(\Delta t)]}{P[K_{-}(0) \to \overline{K}^{0}(\Delta t)]}$$

$$R_{4,CPT}(\Delta t) = \frac{P[\overline{K}^{0}(0) \to K_{-}(\Delta t)]}{P[K_{-}(0) \to K^{0}(\Delta t)]}$$

$$R_{4,CPT}\left(\Delta t\right) = \frac{P\left[K^{\circ}\left(0\right) \to K_{-}\left(\Delta t\right)\right]}{P\left[K_{-}\left(0\right) \to K^{0}\left(\Delta t\right)\right]}$$

 $(L=1.7 \text{ fb}^{-1})$

$$DR_{CPT} = \frac{R_{2,CPT} \left(\Delta t >> \tau_{S}\right)}{R_{4,CPT} \left(\Delta t >> \tau_{S}\right)} = 1 - 8\Re \delta - 8\Re x_{-}$$

DR_{CPT} is the cleanest CPT observable; DR_{CPT}≠1 implies CPT violation. KLOE-2 can reach a precision <1%.

There exists a connection between DR_{CPT} and the A_{S,L} charge asymmetries:

$$DR_{CPT} = 1 + 2\left(A_L - A_S\right)$$

Using KTeV result on A_1 and KLOE on A_2 : $DR_{CPT} = 1.016 \pm 0.011$ (preliminary)

$$DR_{CPT} = 1.016 \pm 0.011$$

Search for the CP violating $K_S \rightarrow \pi^0 \pi^0 \pi^0$ decay

 $3\pi^0$ is a pure CP=-1 state; observation of $K_S \to 3\pi^0$ is an unambiguous sign of CP violation in mixing and/or in decay.

Standard Model prediction: BR($K_s \rightarrow 3\pi^0$) = 1.9 · 10⁻⁹

PLB 723 (2013) 54

Best upper limit by KLOE with 1.7 fb⁻¹

BR($K_S \rightarrow 3\pi^0$) < 2.6 × 10⁻⁸ @ 90% CL

- "K_L crash" (K_L in the EMC)
 - + 6 prompt photons
- Analysis based on γ counting and kinematic fit in the $2\pi^0$ and $3\pi^0$ hypothesis
- Main bckg: $K_S \rightarrow 2\pi^0$ (4 prompt photons), also used for normalization
- KLOE-2: selection criteria hardened to face the larger machine bkg:
 - ~ 10x better bkg rejection

$$K_S \rightarrow 3\pi^0 \rightarrow 6\gamma$$

$$K_S \rightarrow 2\pi^0 + \text{accidental/splitted clusters}$$

 $K_L \rightarrow 3\pi^0$, $K_S \rightarrow \pi^+ \pi^-$ ("fake K_L -crash")

KLOE-2 data analysis (L \approx 300 pb⁻¹): with old analysis scheme 1 event selected as a signal ($\epsilon_{3\pi} \sim 19$ %) \Rightarrow Br(K_S $\rightarrow 3\pi^0$) $\lesssim 2.5 \times 10^{-7}$ @90% CL (preliminary) Full KLOE-2 statistics + optimized analysis can reach $\lesssim 10^{-8}$

Conclusions

- The KLOE-2 experiment at the upgraded DAΦNE successfully completed its data taking campaign collecting L=5.5 fb⁻¹ by the end of March 2018.
- The KLOE+KLOE-2 data sample (~ 8 fb⁻¹) is worldwide unique for typology and statistical relevance.
- The entangled neutral kaon system at a ϕ -factory is an excellent laboratory for the study of discrete symmetries.
- The analysis of the full KLOE data set is being completed:
 - new measurement of the K_S semileptonic charge asymmetry (paper submitted)
 - first test of T and CPT in neutral kaon transitions: analysis in advanced phase; the connection of the CPT test with $A_{\rm S,L}$ opens new interesting possibilities.
- The study of discrete symmetries with neutral kaons is one of the key issues at KLOE-2. Several KLOE results will be significantly improved.
- The analysis of KLOE-2 data already started on several benchmark processes (K_S -> π I ν , K_S -> π + π -, K_S -> π 0 π 0, K_L -> π + π -, K_L ->3 π 0, etc.)
- Among them a preliminary study searching for the CP violating K_S ->3 π^0 decay shows the possibility to further improve the limit on this BR.