Charged Lepton Flavor Violation in a Class of Radiative Neutrino Mass Generation Models

Talal Ahmed Chowdhury

University of Dhaka, Bangladesh

In collaboration with Salah Nasri, UAE University, United Arab Emirates

Based on PRD, 97, 075042 (2018) (arXiv: 1801.07199)

XXXIX International Conference on High Energy Physics Coex, Seoul, 4-11 July 2018

Motivation

- Both the Origin and Smallness of the Neutrino mass and the Dark Matter of the universe haven't been explained conclusively by the Physics Beyond Standard Model (BSM).
- A well-motivated approach is to identify any interplay between the Dark matter and neutrino that is responsible for neutrino's small non-zero mass.
- This leads to a Radiative Neutrino Mass Generation Model (R ν Mass Model) where the dark matter particles enter into the loop diagrams that give the neutrino its mass.
- A nice feature of $R\nu$ Mass model is that its particle content is accessible to currently operating LHC or future colliders.
- In this talk, we will address the viability of such R
 *v*Mass model: 3-loop Krauss-Nasri-Trodden (KNT) model in the light of **bounds** on Charged Lepton Flavor Violation (LFV). arXiv:hep-ph/0210389

$\mathbf{R}\nu$ Mass Model: The minimal KNT Approach

Figure : Neutrino mass generation in the minimal KNT model at 3-loop. In addition to the Standard Model (SM) particle content, the KNT model contains,

- Two single charged scalars, S_1^+ , S_2^+ .
- Three right handed fermion singlets, N_{R_i} under the SM Gauge Group.
- Here $\{S_2^+, N_{R_i}\}$ are charged under Z_2 . Because of this Z_2 symmetry, the lightest fermion singlet, N_{R_1} acts as the DM candidate.

The Generalized KNT model with Large Electroweak Multiplets

 Subsequently it was found that, the minimal field content of 3-loop KNT model can be generalized with larger electroweak multiplets,

$$S_{2}^{+} \rightarrow \mathbf{\Phi} = \left(\phi^{(n+1)}, ..., \phi^{+}, \phi^{0}, \phi^{'-}, ..., \phi^{'(-n+1)}\right)_{Y=1}^{T}$$
$$N_{R_{i}} \rightarrow \mathbf{F}_{i} = \left(F_{i}^{(n)}, ..., F_{i}^{+}, F_{i}^{0}, F_{i}^{-}, ..., F_{i}^{(-n)}\right)_{Y=0}^{T}$$

arXiv:1404.2696; 1404.5917; 1504.05755

- There is no symmetry to forbid replacing the minimal field content of the KNT model with larger electroweak (EW) multiplets.
- This replacement with larger EW multiplets leave the topology of the neutrino mass generation loop diagram invariant.
- Advantage of large electroweak multiplet: Appearance of accidental symmetry which can forbid the Dirac neutrino mass term $(n \ge 2)$ and automatically stabilize the DM $(n \ge 3)$. No Z_2 symmetry is needed.
- So we focus on singlet (n = 0), triplet (n = 1), 5-plet (n = 2) and 7-plet (n = 3) systematically to determine their viabilities.

- Lepton flavor violation is ubiquitous among the neutral leptons i.e. neutrino oscillation.
- What about the charged lepton flavor violation?
- In the SM, with massive neutrino of $m_{\nu} \sim O(0.1 \text{ eV})$ and Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix, U_{PMNS} , the branching ratio of $\mu \rightarrow e\gamma$ turns out to be about 10^{-49} .
- But many BSM scenario, especially the new physics related to the generation of the neutrino mass can lead to unsuppressed charged LFV processes.
- Therefore, one can also expect large charged LFV in ${\rm R}\nu$ Mass model like the KNT model.

The Model and its Mass Spectrum

The Lagrangian of the generalized KNT model contains

$$\mathcal{L} \supset \mathcal{L}_{SM} + i \overline{\mathbf{F}_i} \not D \mathbf{F}_i + (D_\mu \Phi)^{\dagger} (D^\mu \Phi) + (D_\mu S_1)^{\dagger} (D^\mu S_1) - V(H, \Phi, S_1)$$

$$- \frac{M_{F_i}}{2} \overline{\mathbf{F}_i^c} \mathbf{F}_i + f_{\alpha\beta} \overline{I_{L_\alpha}^c} I_{L_\beta} . S_1^+ + g_{i\alpha} \overline{\mathbf{F}_i} . \Phi . e_{R_\alpha} + h.c$$

• In the limit, $M_F \gg M_W$, the mass splitting between the $F^{(Q)}$ and $F^{(Q')}$ is, $M_Q - M_{Q'} \sim (Q^2 - Q'^2)\Delta$ where, $\Delta \equiv \alpha_W \sin^2(\theta_W/2)M_W \sim 166$ MeV. hep-ph/0512090

• For,
$$M_{F_i} \sim 10$$
 TeV, $\Delta m_{F_i}^2 / M_{F_i}^2 \sim 10^{-4}$

- V ⊃ λ_{Hφ2}(Φ*.H).(H*.Φ) gives the mass splittings in the scalar multiplet.
- For, $m_{\phi} \sim 10$ TeV and $\lambda_{H\phi_2} \sim 2\pi$, Maximum allowed splitting, $\Delta m_{ij}^2/m_{\phi}^2 \sim 10^{-3}$.

So we consider both fermion and scalar components almost degenerate. It's the 'near-degenerate limit' of the KNT model.

LFV Process	Present Bound	Future Sensitivity
$\mu ightarrow e\gamma$	$4.2 imes10^{-13}$ (MEG)	$5.4 imes10^{-14}$ (MEGII)
$\mu ightarrow$ 3 e	10 ⁻¹² (SINDRUM)	10 ⁻¹⁶ (Mu3e)
$\mu, Au ightarrow e, Au$	$7 imes 10^{-13}$ (SINDRUM II)	$6.7 imes10^{-17}$
$\mu, Ti ightarrow e, Ti$	$4.3 imes 10^{-12}$ (SINDRUM II)	(Mu2e)

MEG:arXiv:1605.05081, MEGII:arXiv:1705.10224, SINDRUM: Nucl. Phys. B **299** (1988) 1., Mu3e:Nucl. Part. Phys. Proc. **287-288** (2017) 169., SINDRUM II: Eur. Phys. J. C **47** (2006) 337 & Phys. Lett. B **317** (1993) 631., Mu2e: Nuovo Cim. C **40** (2017) no.1, 48.

As the $\mu \to e\gamma$, $\mu \to ee\overline{e}$ and $\mu - e$ conversion in nuclei have the most sensitive limits, we have focused on them in this work.

イロト イポト イヨト

- The scalar-fermion pair $\{\phi^{(-q)}, F_i^{(q-1)}\}$ where, q = -n+1, ...n+1 give the dipole contribution to $\mu \to e\gamma$.
- $\{S_1^+, \nu_\tau\}$ pair also contributes to the LFV process.

$$A_D^{(1)} = \sum_{i=1}^3 \sum_{\phi} \frac{g_{ei}^* g_{i\mu} q_{\phi}}{32\pi^2} \frac{1}{m_{\phi}^2} F_1(x_{i\phi}^q), \ A_D^{(2)} = -\sum_{i=1}^3 \sum_{F_i} \frac{g_{ei}^* g_{i\mu} q_{F_i}}{32\pi^2} \frac{1}{m_{\phi}^2} F_2(x_{i\phi}^q), \ A_D^{(3)} = \frac{f_{e\tau}^* f_{\tau\mu}}{192\pi^2} \frac{1}{m_{S}^2} F_2(x_{i\phi}^q)$$

where, $x_{i\phi}^{q} = m_{F_{i}^{(q-1)}}^{2} / m_{\phi^{(-q)}}^{2}$

$$\Phi = \left(\dots, \phi^{++++}, \phi^{+++}, \phi^{++}, \phi^{0}, \phi^{'-}, \phi^{''--}, \dots\right)^{T}$$
$$\mathbf{F}_{\mathbf{i}} = \left(\dots, F_{i}^{+++}, F_{i}^{++}, F_{i}^{+}, F_{i}^{0}, F_{i}^{-}, F_{i}^{---}, F_{i}^{----}, \dots\right)^{T}$$

- But there are cancellations in A_D⁽²⁾ because degenerate fermion components with opposite electric charge have the photon line attached to it. The sum over all fermion components, thus, renders A_D⁽²⁾ ~ 0.
- Also similar cancellations take place in A_D⁽¹⁾ when scalar components of opposite charge have the photon line attached to it.
- So the non-negligible contributions come from,
 - triplet: (ϕ^{--}, F_i^+) and (ϕ^-, F_i^0) pairs.
 - 5-plet: (ϕ^{---}, F_i^{++}) and (ϕ^{--}, F_i^{+}) pairs.
 - 7-plet: (ϕ^{----}, F_i^{+++}) and (ϕ^{---}, F_i^{++}) pairs.

$\mu \rightarrow ee\overline{e}$: γ -penguin

The process, $\mu \to e e \overline{e}$ receives contributions from,

- γ-penguin diagrams
- Z-penguin diagrams
- Box diagrams

Figure : γ -penguin diagrams giving dipole $A_D^{(1)}$ and non-dipole $A_{ND}^{(1)}$ contributions (left fig). And similarly, $A_D^{(2)}$ and $A_{ND}^{(2)}$, respectively (right fig).

- Again the cancellations are at work and makes $A_{ND}^{(2)} \sim 0$ along with $A_D^{(2)} \sim 0$.
- Same pairs of (ϕ, F_i) that give non-zero contributions to $A_D^{(1)}$ also provide non-zero $A_{ND}^{(1)}$.

$\mu \rightarrow ee\overline{e}$: Z-penguin

Figure : Z-penguin diagrams giving $F_Z^{(1)}$ (upper panel) and $F_Z^{(2)}$ (lower panel) contributions respectively.

triplet: $F_Z^{(1)}(\phi^{--},F_i^+) = -F_Z^{(1)}(\phi^0,F_i^-)$. So the only non-zero contribution is $F_Z^{(1)}(\phi^-,F_i^0)$. $F_Z^{(2)}$ is also zero.

5-plet:
$$\begin{cases} F_{Z}^{(1)}(\phi^{--},F_{i}^{+}) &= -F_{Z}^{(1)}(\phi^{0},F_{i}^{-}) \\ F_{Z}^{(1)}(\phi^{--},F_{i}^{+}) &= -F_{Z}^{(1)}(\phi^{0},F_{i}^{-}) \end{cases}$$
7-plet:
$$\begin{cases} F_{Z}^{(1)}(\phi^{---},F_{i}^{+++}) &= -F_{Z}^{(1)}(\phi''+,F_{i}^{---}) \\ F_{Z}^{(1)}(\phi^{---},F_{i}^{++}) &= -F_{Z}^{(1)}(\phi',F_{i}^{--}) \\ F_{Z}^{(1)}(\phi^{---},F_{i}^{+}) &= -F_{Z}^{(1)}(\phi',F_{i}^{--}) \end{cases}$$

< ≣ >

$\mu \rightarrow ee\overline{e}$: Box diagrams

Figure : One loop box topologies associated to Feynman diagrams contributing to $\mu \rightarrow ee\overline{e}$.

- The increase of the multiplet size leads to the increase of box diagrams.
- Unlike the case of cancellations among different γ and Z-penguin diagrams, all box diagrams add up coherently.
- Therefore, one can expect dominant contribution of box diagrams in $\mu \rightarrow ee\overline{e}$ compared to the penguin diagrams.

$\mu-e$ Conversion in Nuclei

Figure : $\mu - e$ conversion only involves γ and Z-penguin diagrams.

- No box diagram for the case of μe conversion in nuclei.
- γ -penguin leads to an effective coupling with the quark which is proportional to $(A_{ND} A_D)/G_F$. Expected to be more suppressed than $\mu \rightarrow ee\overline{e}$.

The relevant parameter space of the model in the near-degenerate limit consists of $\{M_{F_{1,2,3}}, m_{\phi}, m_{S}, f_{\alpha\beta}, g_{i\alpha}, \lambda_{S}\}$

- $M_{F_1} \in (1, 50)$ TeV; F_1^0 as a Dark Matter Candidate. So taken to be lightest to avoid decays like $F_1^0 \rightarrow \phi^+ e_R^-$ etc.
- $M_{F_{2,3}} \in M_{F_1} + (1, 10)$ TeV; We are considering Non-degenerate Fermion mass, $M_{F_1} < M_{F_{2,3}}$.
- $m_{\phi} \in M_{F_1} + (10, 100)$ TeV; Always to have $M_{F_1} < m_{\phi}$.
- $m_S \in (500 \text{ GeV}, 50 \text{ TeV}); S_1^+ \text{ can be light as it doesn't enter into DM sector. Sensitivity study of <math>e^+e^- \rightarrow S_1^+S_1^- \rightarrow l_{\alpha}^+l_{\beta}^- + E_{\text{miss}}$ in ILC-like collider with $\sqrt{s} = 1$ TeV puts $m_S \gtrsim 240$ GeV. arXiv:1403.5694
- $\lambda_S \in (0.001, 0.1)$; Relevant for neutrino mass matrix.
- The yukawa couplings, $f_{\alpha\beta}$ and $g_{i\alpha}$ are chosen numerically so that they satisfy the low energy neutrino constraints.

・ロ > ・(部 > ・(き > ・(き > ・)

Charged Lepton Flavor Violating Rates in KNT

Relative Contributions to Charged LFV Processes

Figure : (Left) Relative comparison among dipole contributions, $A_D^{(1)}$ and $A_D^{(3)}$ and box contributions, $B^{(1)}$ and $B^{(3)}$ in G_F^{-1} unit for the singlet case. Here we can see that, box contributions are larger that dipole contributions. (Right) Similar comparison is made for the 7-plet case. As A_{ND} behaves similarly as A_D and also F_Z is comparatively smaller than A_D and B, we have not included them in the figure.

Conclusion

- The cancellations among several one-loop photonic dipole term, photonic non-dipole term and Z-penguin terms make the $\mu \rightarrow e\gamma$ and μe conversion in Au and Ti rates highly suppressed compared to $\mu \rightarrow ee\overline{e}$.
- Large rate of $\mu \to ee\overline{e}$ is due to the coherent addition of one-loop box diagrams where no cancellations take place.
- For $M_{F_1} = 1 50$ TeV mass range, the region of viable parameter space set is already excluded by the limit from SINDRUM and future Mu3e will exclude almost all of the parameter space.
- The pattern of LFV rates $Br(\mu \to ee\overline{e}) \gg Br(\mu \to e\gamma) \& \mu e \operatorname{conv}$ will point out to the Generalized KNT model.
- A possibe extension of this study will the looking into τ → μγ, eγ, τ → 3e and τ → 3μ to understand more about flavor structure of the model.

・ロト ・四ト ・ヨト ・ヨト

Thank you very much for your attention.

ICHEP2018, Seoul

Charged LFV in R_VMass Models

The Neutrino Mass Matrix is given by,

$$(M_{\nu})_{\alpha\beta} = \frac{c\lambda_{S}}{(4\pi^{2})^{3}} \frac{m_{\gamma}m_{\delta}}{m_{\phi}} f_{\alpha\gamma}f_{\beta\delta}g_{\gamma i}^{*}g_{\delta i}^{*}F\left(\frac{M_{F_{i}}^{2}}{m_{\phi}^{2}},\frac{m_{S}^{2}}{m_{\phi}^{2}}\right)$$

Figure : $F(\alpha, \beta)$ with $\alpha = M_{F_i}^2 / m_{\phi}^2$ and $\beta = m_S^2 / m_{\phi}^2$.

э

< ∃ →

The branching ratio for $\mu
ightarrow e\gamma$, normalized by ${
m Br}(\mu
ightarrow e\overline{
u_e}
u_\mu)$, is

$$\mathsf{Br}(\mu o e\gamma) = rac{3(4\pi)^3 lpha_{em}}{4G_F^2} \left| A_D
ight|^2 \mathsf{Br}(\mu o e
u_\mu \overline{
u_e})$$

$$A_D = A_D^{(1)} + A_D^{(2)} + A_D^{(3)}$$

where

$$\begin{split} A_D^{(1)} &= \sum_{i=1}^3 \sum_{\phi} \frac{g_{ei}^* g_{i\mu} q_{\phi}}{32\pi^2} \frac{1}{m_{\phi}^2} F_1(x_{i\phi}^q) \\ A_D^{(2)} &= -\sum_{i=1}^3 \sum_{F_i} \frac{g_{ei}^* g_{i\mu} q_{F_i}}{32\pi^2} \frac{1}{m_{\phi}^2} F_2(x_{i\phi}^q) \\ A_D^{(3)} &= \frac{f_{er}^* f_{r\mu}}{192\pi^2} \frac{1}{m_{\varsigma}^2} \end{split}$$

æ.

< ロ > < 部 > < き > < き > ...

$$\begin{split} \mathsf{Br}(\mu \to e e \overline{e}) &= \frac{3(4\pi)^2 \alpha_{em}^2}{8G_F^2} \left[|A_{ND}|^2 + |A_D|^2 \left(\frac{16}{3} \ln \frac{m_\mu}{m_e} - \frac{22}{3} \right) + \frac{1}{6} |B|^2 \\ &+ \frac{1}{3} (2|F_Z^L|^2 + |F_Z^R|^2) + \left(-2A_{ND}A_D^* + \frac{1}{3}A_{ND}B^* - \frac{2}{3}A_DB^* + \mathrm{h.c} \right) \right] \\ &\times \mathsf{Br}(\mu \to e \overline{\nu_e} \nu_\mu) \end{split}$$

 F_Z^L and F_Z^R are given as

$$F_Z^L = \frac{F_Z g_L^l}{g^2 m_Z^2 \sin^2 \theta_W} \quad , \quad F_Z^R = \frac{F_Z g_R^l}{g^2 m_Z^2 \sin^2 \theta_W}$$

$$\begin{split} A_{ND}^{(1)} &= \sum_{i=1}^{3} \sum_{\phi} \frac{g_{ei}^{*} g_{i\mu} q_{\phi}}{32\pi^{2}} \frac{1}{m_{\phi}^{2}} G_{1}(x_{i\phi}^{q}) \\ A_{ND}^{(2)} &= -\sum_{i=1}^{3} \sum_{F_{i}} \frac{g_{ei}^{*} g_{i\mu} q_{F_{i}}}{32\pi^{2}} \frac{1}{m_{\phi}^{2}} G_{2}(x_{i\phi}^{q}) \\ A_{ND}^{(3)} &= \frac{f_{e\tau}^{*} f_{\tau\mu}}{288\pi^{2}} \frac{1}{m_{S}^{2}} \end{split}$$

ICHEP2018, Seoul

æ

The Z-penguin contribution

$$F_Z = F_Z^{(1)} + F_Z^{(2)}$$

$$\begin{split} F_{Z}^{(1)} &= -\frac{1}{16\pi^{2}} \sum_{i=1}^{3} \sum_{(\phi,F_{i})} \left\{ g_{ei}^{*} g_{i\mu} \, g_{ZF_{i}\overline{F_{i}}} \left[\left(2C_{24}(m_{\phi},m_{F_{i}},m_{F_{i}}) + \frac{1}{2} \right) + m_{F_{i}}^{2} C_{0}(m_{\phi},m_{F_{i}},m_{F_{i}}) \right] \\ &+ 2 \, g_{ei}^{*} g_{i\mu} \, g_{Z\phi} \, C_{24}(m_{F_{i}},m_{\phi},m_{\phi}) + g_{ei}^{*} g_{i\mu} g_{Z}^{\prime} B_{1}(m_{F_{i}},m_{\phi}) \right\} \\ F_{Z}^{(2)} &= -\frac{1}{16\pi^{2}} f_{e\tau}^{*} f_{\tau\mu} \left\{ g_{Z\nu\overline{\nu}} \left(2C_{24}(m_{S_{1}},0,0) + \frac{1}{2} \right) + 2g_{ZS_{1}} C_{24}(0,m_{S_{1}},m_{S_{1}}) \right. \\ &+ g_{L}^{\prime} B_{1}(0,m_{S_{1}}) \right\} \end{split}$$

The box contribution can be arranged into three parts,

$$B = B^{(1)} + B^{(2)} + B^{(3)}$$
$$e^{2} B^{(1)} = \frac{1}{16\pi^{2}} \sum_{i,j=1}^{3} \left[\frac{\tilde{D}_{0}}{2} g_{ei}^{*} g_{i\mu} g_{ej}^{*} g_{je} + D_{0} m_{F_{j}^{0}} m_{F_{j}^{0}} g_{ei}^{*} g_{ei}^{*} g_{j\mu} g_{je} \right]$$

where, $\tilde{D}_0 = \tilde{D}_0(m_{F_0^0}, m_{F_0^0}, m_{\phi^+}, m_{\phi^+})$ and $D_0 = D_0(m_{F_i^0}, m_{F_j^0}, m_{\phi^+}, m_{\phi^+})$.

$$e^{2} B^{(2)} = \frac{1}{32\pi^{2}} \sum_{i,j=1}^{3} \sum_{F} \sum_{\phi_{1},\phi_{2}} \tilde{D}_{0}(m_{F_{i}},m_{F_{j}},m_{\phi_{1}},m_{\phi_{2}}) g_{ei}^{*} g_{i\mu} g_{ej}^{*} g_{je}, \ e^{2} B^{(3)} = -\frac{1}{32\pi^{2} m_{S}^{2}} f_{e\tau}^{*} f_{\tau\mu} f_{e\tau}^{*} f_{\tau\mu}$$

ICHEP2018, Seoul

The conversion rate, normalized by the muon capture rate is

$$\begin{split} \mathsf{CR}(\mu - e, \mathsf{Nucleus}) &= \frac{p_e E_e m_\mu^3 G_F^2 \alpha_{em}^3 Z_{eff}^4 F_P^2}{8 \pi^2 Z \, \Gamma_{\mathsf{capt}}} \, \left\{ |(Z + N)(g_{LV}^{(0)} + g_{LS}^{(0)}) + (Z - N)(g_{LV}^{(1)} + g_{LS}^{(1)})|^2 \right. \\ &+ \left. |(Z + N)(g_{RV}^{(0)} + g_{RS}^{(0)}) + (Z - N)(g_{RV}^{(1)} + g_{RS}^{(1)})|^2 \right\} \end{split}$$

Here, Z and N are the number of protons and neutrons in the nucleus, Z_{eff} is the effective atomic charge, F_p is the nuclear matrix element and Γ_{capt} represents the total muon capture rate. p_e and E_e are the momentum and energy of the electron which is taken as $\sim m_{\mu}$. $g_{XK}^{(0)}$ and $g_{XK}^{(1)}$ (X = L, R and K = V, S) in the above expression are given as

$$g_{XK}^{(0)} = \frac{1}{2} \sum_{q=u,d,s} (g_{XK(q)} G_K^{(q,p)} + g_{XK(q)} G_K^{(q,n)})$$
$$g_{XK}^{(1)} = \frac{1}{2} \sum_{q=u,d,s} (g_{XK(q)} G_K^{(q,p)} - g_{XK(q)} G_K^{(q,n)})$$

 $g_{XK(q)}$ are the couplings in the effective Lagrangian describing $\mu - e$ conversion,

$$\mathcal{L}_{eff} = -\frac{G_F}{\sqrt{2}} \sum_{q} \left\{ [g_{LS(q)} \overline{e}_L \mu_R + g_{RS(q)} \overline{e}_R \mu_L] \overline{q}q + [g_{LV(q)} \overline{e}_L \gamma^{\mu} \mu_L + g_{RV(q)} \overline{e}_R \gamma^{\mu} \mu_R] \overline{q} \gamma_{\mu} q \right\}$$

 $G^{(q,p)}, G^{(q,n)}$ are the numerical factors that arise when quark matrix elements are replaced by the nucleon matrix elements,

$$\langle p|\overline{q}\Gamma_{K}q|p\rangle = G_{K}^{(q,p)}\overline{p}\Gamma_{K}p , \ \langle n|\overline{q}\Gamma_{K}q|n\rangle = G_{K}^{(q,n)}\overline{n}\Gamma_{K}n$$

ICHEP2018, Seoul

イロト イポト イヨト イヨト 三日

The relevant effective coupling for the conversion in this model is

$$g_{LV(q)} = g_{LV(q)}^{\gamma} + g_{LV(q)}^{Z}$$
$$g_{RV(q)} = g_{LV(q)}|_{L\leftrightarrow R}$$
$$g_{LS(q)} \approx 0 , \quad g_{RS(q)} \approx 0$$

The relevant couplings are

$$\begin{split} g_{RV(q)}^{\gamma} &= \frac{\sqrt{2}}{G_F} e^2 Q_q \left[(A_{ND}^{(1)} + A_{ND}^{(2)}) - (A_D^{(1)} + A_D^{(2)}) \right], \quad g_{LV(q)}^{\gamma} = \frac{\sqrt{2}}{G_F} e^2 Q_q (A_{ND}^{(3)} - A_D^{(3)}) \\ g_{RV(q)}^Z &= -\frac{\sqrt{2}}{G_F} \frac{g_L^q + g_R^q}{2} \frac{F_L^{(2)}}{m_Z^2}, \quad g_{LV(q)}^Z = -\frac{\sqrt{2}}{G_F} \frac{g_L^q + g_R^q}{2} \frac{F_L^{(2)}}{m_Z^2} \end{split}$$

The decoupling behavior of LFV process,

ICHEP2018, Seoul

Charged LFV in Rv Mass Models

æ

- ∢ ⊒ →