Study of the Lorentz structure of tau decays and the rare tau decays from Belle K.Hayasaka (Niigata U.) #### Table of contents - 1. Introduction for KEKB/Belle - 2. Tau rare decays 3. Michel parameter measurement $$\begin{array}{c} \checkmark \tau \to \ell \ \gamma \vee \vee \\ \checkmark \tau \to \ell \ \vee \vee \end{array}$$ 4. Summary #### Table of contents - 1. Introduction for KEKB/Belle - 2. Tau rare decays Y.Jin gives a poster presentation. Please visit #E3 poster. (See Program Book Page 71) 3. Michel parameter measurement $$\begin{array}{c} \checkmark \tau \to \ell \ \gamma \nu \nu \\ \checkmark \tau \to \ell \ \nu \nu \end{array}$$ 4. Summary τ #### KEKB/Belle B-factory: E at CM = Y(4S) $e^+(3.5 \text{ GeV}) e^-(8 \text{ GeV})$ $\sigma(\tau\tau):\sigma(b\bar{b})=0.9:1.1$ \rightarrow B-factory is also a τ -factory! #### Belle finished data taking on Jun.30,2010. Good track reconstruction and particle identification Lepton ID eff.~ (80-90)% Fake rate ~ (0.1-3)% We can analyze ~9x10⁸ ττ sample at Belle. ### Tau rare decays - Some of tau decays allowed by SM are expected to be very small. - →B-factory's sensitivity can reach to observe some of them. We study $\tau \rightarrow \ell \ell' + \ell' - \nu \nu$ $\tau \rightarrow \pi \ell' + \ell' - \nu \nu$ using Belle's full data sample. ($\ell = e, \mu$) τ ### Physics motivation Intermediate processes of $\tau \rightarrow \pi \ell + \ell \nu$ Pablo.Roig et. al, PRD 88, 033007 (2013) Recent progress of the hadron physics enables us to calc. the contributions of the detailed processes for this decay. \rightarrow Good test for hadron physics τ ### Theoretical prediction Theoretical prediction of BF for $\tau \rightarrow \pi \ell + \ell \nu$ $$BR(\tau^- \to \pi^- \nu_\tau e^+ e^-) = (1.7^{+1.1}_{-0.3}) \cdot 10^{-5}$$ $$BR(\tau^- \to \pi^- \nu_\tau \mu^+ \mu^-) \in [3 \cdot 10^{-7}, 1 \cdot 10^{-5}]$$ Pablo.Roig et. al, PRD 88, 033007 (2013) These modes have been never searched for and O(10⁻⁵) is reachable sensitivity at B-factory. #### Signal topology/Expected BG ### Signal extraction - > To avoid any bias, we perform blind analysis. - > We set different signal box for e and μ modes. BKG VS signal BR of the signal is assumed to be 1.7×10^{-5} . Rxy: the distance of $\mu\mu$ vertex from interaction point. By subtracting BG MC in the signal box, signal yield will be evaluated. $\pi^{-}\pi^{+}\pi^{-}V$ #### Distributions in sideband region → Good agreement is seen between MC and data in sideband region. → Data well-understood #### Opening the signal boxes #### Results | | τ-→π-e ⁺ e ⁻ ν | τ ⁺ →π ⁺ e ⁺ e ⁻ ν | τ-→π-μ+μ⁻ν | τ ⁺ →π ⁺ μ ⁻ ν | |-----------|--------------------------------------|--|------------|---| | Signal MC | 165 ± 6 | 166 ± 6 | 205 ± 8 | 206 ± 8 | | BG MC | 458 ± 22 | 455 ± 21 | 937 ± 44 | 933 ± 44 | | Observed | 676 | 689 | 1001 | 967 | $$BR(\tau \rightarrow \pi eev) = (2.33 \pm 0.19 \pm 0.19) \times 10^{-5}$$ $BR(\tau \rightarrow \pi \mu \mu \nu) < 5.5 \times 10^{-6}$ @90%CL Belle preliminary #### First observation for $\tau \rightarrow \pi eev$ In both case, the biggest contribution for the systematics comes from BG estimation. Theoretical prediction (Pablo.Roig et. al, PRD 88, 033007 (2013)) $$BR(\tau^{-} \to \pi^{-}\nu_{\tau}e^{+}e^{-}) = (1.7^{+1.1}_{-0.3}) \cdot 10^{-5}$$ $BR(\tau^{-} \to \pi^{-}\nu_{\tau}\mu^{+}\mu^{-}) \in [3 \cdot 10^{-7}, 1 \cdot 10^{-5}]$ τ $$\tau \rightarrow \ell \ell' + \ell' - \nu \nu$$ $\tau \rightarrow \ell \ell' + \ell' - vv$ is also a rare decay which can be established by B-factory measurement. $$Br(\tau \to ee^+e^-\nu_\tau \nu_e) = (2.7^{+1.5+0.4+0.1}_{-1.1-0.4-0.3}) \times 10^{-5}$$ CLEO Result $Br(\tau \to \mu e^+e^-\nu_\tau \nu_\mu) < 3.2 \times 10^{-5}$ @90% CL with 3.6fb⁻¹ Theoretical prediction: JHEP 1604, 185(2016) | Decay mode | Branching fraction | |---|-------------------------------------| | $\tau^- \to e^- e^+ e^- \bar{\nu}_e \nu_\tau$ | $(4.21 \pm 0.01) \times 10^{-5}$ | | $\tau^- \to e^- \mu^+ \mu^- \bar{\nu}_e \nu_\tau$ | $(1.247 \pm 0.001) \times 10^{-7}$ | | $\tau^- \to \mu^- e^+ e^- \bar{\nu}_\mu \nu_\tau$ | $(1.984 \pm 0.004) \times 10^{-5}$ | | $\tau^- \to \mu^- \mu^+ \mu^- \bar{\nu}_\mu \nu_\tau$ | $(1.1831 \pm 0.001) \times 10^{-7}$ | ### Expectation and BG study > MC studies almost finished. | | $e^{\pm}e^{+}e^{-}\nu_{\tau}\nu_{e}$ | $\mu^{\pm}e^{+}e^{-}\nu_{\tau}\nu_{\mu}$ | $e^{\pm}\mu^{+}\mu^{-}\nu_{\tau}\nu_{e}$ | $\mu^{\pm}\mu^{+}\mu^{-}\nu_{\tau}\nu_{\mu}$ | |-------------------------------------|--|---|--|--| | Detection Efficiency | 1.76 % | 1.20% | 3.56% | 1.67% | | Main Background(s) | $e v_{\tau} v_{e} \gamma$, $\pi \pi^{0} v_{\tau}$ | $ \mu\nu_{\tau}\nu_{\mu}\gamma,\pi\pi^{0}\pi^{0}\nu_{\tau} ,\pi\pi^{0}(\rightarrow e^{+}e^{-}\gamma)\nu_{\tau}$ | $\pi\pi^0 u_{ au}$ | $\pi\pi^+\pi^-\nu_{ au}$ | | Expected number of signals at Belle | 1300 | 430 | 8 | 4 | | Purity of signal | 47% | 50% | 37% | 16% | ### Expectation and BG study > MC studies almost finished. | | $e^{\pm}e^{+}e^{-}\nu_{\tau}\nu_{e}$ | $\mu^{\pm}e^{+}e^{-}\nu_{ au}\nu_{\mu}$ | $e^{\pm}\mu^{+}\mu^{-}\nu_{\tau}\nu_{e}$ | $\mu^{\pm}\mu^{+}\mu^{-}\nu_{\tau}\nu_{\mu}$ | |-------------------------------------|--|---|--|--| | Detection Efficiency | 1.76 % | 1.20% | 3.56% | 1.67% | | Main Background(s) | $e v_{\tau} v_{e} \gamma$, $\pi \pi^{0} v_{\tau}$ | $\mu \nu_{\tau} \nu_{\mu} \gamma, \pi \pi^{0} \pi^{0} \nu_{\tau}$ $\pi \pi^{0} (\rightarrow e^{+} e^{-} \gamma) \nu_{\tau}$ | $\pi\pi^0 u_{ au}$ | $\pi\pi^+\pi^-\nu_{ au}$ | | Expected number of signals at Belle | 1300 | 430 | 8 | 4 | | Purity of signal | We can expect "first observation" for them! 6 | | | | ### Expectation and BG study > MC studies almost finished. | | | 3110 | |----------------------|--------------------------------------|---| | | $e^{\pm}e^{+}e^{-}\nu_{\tau}\nu_{e}$ | $\mu^{\pm}e^{+}e^{-}\nu_{\tau}\nu_{\mu}$ $e^{\pm}\nu^{+}$ riteria allos | | Detection Efficiency | 1.76 % | 1.20° ction incertain | | Main Background(s) | $ev_{\tau}v_{e}\gamma,\pi\pi^{0}$ | a selectic une | | Expected number | of ci. | systemac. 4 | | of signals | 1011 when | System | | rim1Zac | of the | for them! % | | mulling in | in or a d | 500 | #### Lorentz structure on τ decay –In general, an interaction relating to τ leptonic decay can be expressed as: $$\mathcal{M} = \underbrace{\begin{array}{c} \mathbf{V}_{\tau} \\ \mathbf{S}, \mathbf{V}, \mathbf{T} \\ \mathbf{V}_{\ell} \mathbf{V}_{\ell}$$ - ✓In the SM, only g_{LL}^V is non-zero (=1). - \rightarrow Non-zero g_{ij}^N indicates the existence of New Physics, model-independently! - \checkmark Experimentally, only bilinear combinations of g_{ij}^N appear in the observables, - i.e., Michel parameters. 8TH JULY 2017 ### Experimental results #### $\eta = 0.013 \pm 0.020$ $\xi_h = 0.985 \pm 0.03$ - $\rho = 0.745 \pm 0.008 \times \xi$ can be extracted from τ hadronic decays: ξ_h - > The accuracy of them in PDG are around a few percent. - > The results have been obtained more than 20 years ago. - $\rightarrow \bar{\eta}$ and $\xi \kappa$ have not been measured yet. #### $\xi \delta = 0.746 \pm 0.021$ We update/firstly measure them using the worldlargest τ data sample. # Result for MP measurement using $\tau \rightarrow \ell \gamma \nu \nu$ > Using 711fb⁻¹, Michel parameters $\bar{\eta}$, $\xi \kappa$ are extracted via radiative tau leptonic decay. | Item | $\sigma^e_{ar{\eta}}$ | $\sigma^e_{\xi\kappa}$ | $\sigma^{\mu}_{ar{\eta}}$ | $\sigma^{\mu}_{\xi\kappa}$ | Evaluated by | |----------------------------------|-----------------------|------------------------|---------------------------|----------------------------|--------------| | Relative normalizations | 3.8 | 0.69 | 0.13 | 0.04 | MC | | Absolute normalizations | 1.0 | 0.01 | 0.03 | 0.001 | MC | | Formulation of PDFs | 2.5 | 0.24 | 0.67 | 0.22 | MC | | Input of branching ratio | 3.8 | 0.05 | 0.25 | 0.01 | PDG value | | Effect of cluster overlap in ECL | 2.2 | 0.46 | 0.02 | 0.06 | Data | | Detector resolution | 0.74 | 0.20 | 0.22 | 0.02 | MC | | Exp/MC corrections | 1.9 | 0.14 | 0.09 | 0.10 | Data | | E_{γ} selection | 0.91 | 0.22 | _ | _ | Data | | Total | 6.8 | 0.93 | 0.77 | 0.25 | | τ →eγνν has no sensitivity for $\bar{\eta}$. $\bar{\eta}$ is obtained only from $\tau \rightarrow \mu \gamma \nu \nu$. $\xi \kappa$ is averaged from results for $\tau \rightarrow \mu \gamma \nu \nu$ and $\tau \rightarrow e \gamma \nu \nu$. PTEP 2018 023C01 First measurement! $$\bar{\eta} = 1.3 \pm 1.5 \pm 0.8$$ $$\xi \kappa = 0.5 \pm 0.4 \pm 0.2$$ 19 # Status for MP measurement using $\tau \rightarrow \ell \ \nu \nu$ #### > Systematic uncertainties | Source | $\Delta(\rho)$, % | $\Delta(\eta)$, % | $\Delta(\xi_{ ho}\xi)$, % | $\Delta(\xi_{\rho}\xi\delta)$, % | | | |------------------------------------|----------------------|--------------------|----------------------------|-----------------------------------|--|--| | | Physical corrections | | | | | | | ISR+ $\mathcal{O}(\alpha^3)$ | 0.10 | 0.30 | 0.20 | 0.15 | | | | $ au ightarrow \ell u u \gamma$ | 0.03 | 0.10 | 0.09 | 0.08 | | | | $ au ightarrow ho u \gamma$ | 0.06 | 0.16 | 0.11 | 0.02 | | | | Background | 0.20 | 0.60 | 0.20 | 0.20 | | | | Apparatus corrections | | | | | | | | Resolution ⊕ brems. | 0.10 | 0.33 | 0.11 | 0.19 | | | | $\sigma(\mathcal{E}_{ ext{beam}})$ | 0.07 | 0.25 | 0.03 | 0.15 | | | | Normalization | | | | | | | | $\Delta \mathcal{N}$ | 0.11 | 0.50 | 0.17 | 0.13 | | | | without Data/MC corr. | 0.29 | 0.95 | 0.38 | 0.38 | | | | trigger eff. corr. | ~ 1 | \sim 2 | ~ 3 | ~ 3 | | | Now, we are working on more-understanding of the trigger efficiency; Aiming to the accuracy of the sub-percent level. ### Summary - > Belle studies Lorentz structure of tau decay and rare tau decays: - $-\tau \rightarrow \pi \ell \ell \nu$ firstly has been searched for. - > First observation of $\tau \rightarrow \pi eev$ has been achieved and the upper limit of BF for $\tau \rightarrow \pi \mu \mu \nu$ is set: - \Rightarrow BR($\tau \rightarrow \pi eev$)=(2.33 ± 0.19 ± 0.19)×10⁻⁵ - > BR(τ → $\pi\mu\mu\nu$)<5.5x10⁻⁶ @90CL Belle preliminary - $-\tau \rightarrow \ell \ \ell \ \nu \nu$ analysis is on-going. - > First observation of $\tau \rightarrow \ell$ eevv is expected. - Michel parameters via $\tau \rightarrow \ell \gamma \nu \nu$ have been firstly measured. - $> \bar{\eta} = 1.3 \pm 1.5 \pm 0.8, \xi \kappa = 0.5 \pm 0.4 \pm 0.2$ PTEP 2018 023C01 - Michel parameters via $\tau \rightarrow \ell \ vv$ is on-going. - > Aiming sub-percent accuracy ### Systematic uncertainties for $\tau \quad \tau \rightarrow \pi \; \ell \; \ell \; \nu$ | | e mode | μ mode | |-----------------------|--------|--------| | Luminosity | 1.4% | 1.4% | | ττ cross sec. | 0.3% | 0.3% | | Tracking | 1.4% | 1.4% | | PID | 3.2% | 3.2% | | Trigger | 0.5% | 0.7% | | Signal detection eff. | 0.4% | 0.3% | | BG estimation | 13.3% | 20.5% | | Total | 14% | 21% |