Recent results on au-lepton decays with the BABAR detector

Thomas Lück, on behalf of the BABAR collaboration

INFN Pisa and SNS Pisa

7th July 2018, at ICHEP 2018 in Seoul

Outline

- Introduction and dataset
- Spectral function $au^- o K^- K_S
 u_ au$
 - Introduction
 - Event selection
 - Results
- Branching fractions $\tau^- \to h^- n \pi^0 \nu_{\tau}$
 - Introduction
 - Event selection
 - Results
- Summary

Spectral function
$$\tau^- \to K^- K_{\rm S} \nu_{\tau}$$
 Branching fractions $\tau^- \to h^- n \pi^0 \nu_{\tau}$ Summary

- BABAR detector: multi purpose experiment operated at PEP-II asymmetric B - Factory (1999 - 2008)
- dataset: around 430 imes 10⁶ of $e^+e^- o au^+ au^-$ events (at $\sqrt{s}=10.58\,{
 m GeV}$)

(1) silicon vertex tracker; (2) drift chamber; (3) Cherenkov detector; (4) electromagnetic calorimeter; (5) superconducting solenoid; (6) flux return and muon detector

Motivation: spectral function $\tau^- \to K^- K_s \nu_{\tau}$

- \bullet au lepton heavy enough to decay into light mesons
- can be used measure the spectral function:

$$\bullet \ \ V(q) = \tfrac{m_\tau^8}{12\pi C(q)|V_{ud}|^2} \tfrac{\mathcal{B}(\tau^- \to K^- K_S \nu_\tau)}{\mathcal{B}(\tau^- \to e^- \nu_\tau \bar{\nu}_e)} \tfrac{1}{N} \tfrac{dN}{dq}$$

• spectral function is related to the cross section for $e^+e^- o K\bar{K}$:

•
$$\sigma_{e^+e^- \to K\bar{K}}^{I=1}(q) = \frac{4\pi^2\alpha^2}{q^2}V(q)$$

• input for the vacuum polarization corrections for g-2

Event selection

Selection requirements

- tag side: $\tau^+ \to \ell^+ \bar{\nu}_\tau \nu_\ell$
- signal side: $\tau^- \to K^- K_S \nu_{\tau}$
- 4 tracks from IP (total charge zero)
- quality cuts on tracks: good Particle IDentification (PID); and reject $e^+e^- \rightarrow e^-e^+$ and $e^+e^- \rightarrow \mu^-\mu^+$
- select events with event shapes compatible with au decays
- Particle IDentification (PID) for lepton (e^{\pm} or μ^{\pm}) and kaon (opposite charge)
- remaining 2 tracks: $K_S \rightarrow \pi^-\pi^+$
- avg. selection efficiency $\approx 13\%$

Background subtraction

Main background contributions:

- $\tau^- \to K^- K_S \pi^0 \nu_\tau$ (79%);
- $\tau^- \to \pi^- K_S \nu_\tau$ (10%);
- $\tau^- \to \pi^- K_S \pi^0 \nu_{\tau}$ (3%)
- mis-identified lepton (7%) from $\tau^- \to \pi^- \nu_\tau$ and $\tau^- \to \pi^- \pi^0 \nu_\tau$

Data driven background estimation

- background subtraction bin by bin in $m_{K^-K_s}$
- use data to subtract background decays containing π^0 or have a mis-reconstructed K_S
- ullet subtract without simulation and assumption on invariant K^-K_S mass
- only the remaining backgrounds are subtracted from MC

Background subtraction

Background from mis-reconstructed K_S

- subtract non- K_S background using sidebands (SB) in $m_{\pi^+\pi^-}$
- fraction of non- K_S bkg: $\approx 10\%$ for $m_{K^-K_S} < 1.3~GeV/c^2$ increases to up to 50% for $m_{K^-K_S} > 1.6~GeV/c^2$ (mean $m_{K^-K_S} \approx 1.3~GeV/c^2$)

Subtraction of background containing π^0

- reconstruct $\pi^0 \to \gamma \gamma$ and sub-divide sample into events with at least one π^0 and events without π^0
- π^0 reconstruction efficiency estimated on MC \Rightarrow solve for number of signal events

Systematic uncertainties

- several sources of systematic uncertainties
- estimated by varying inputs to this analysis

Sources	
Dources	uncertainty $(\%)$
Luminosity	0.5
Tracking efficiency	1.0
PID	0.5
non- K_S background subtraction	0.4
$\tau^+\tau^-$ background without π^0	0.3
$\tau^+\tau^-$ background with π^0	2.3
$q\bar{q}$ background	0.5
total	2.7

Results

Branching fraciion estimation

- $N_{exp} = 223741 \pm 3461$ (stat uncert. only, efficiency corrected)
- $\mathcal{B}(\tau^- \to K^- K_S \nu_\tau) = \frac{N_{exp}}{2\mathcal{L}\mathcal{B}_{len}\sigma_{\tau\tau}} = (0.739 \pm 0.011 \pm 0.020) \times 10^{-3}$

Efficiency corrected yield

Resulting spectral function

Branching fractions $\tau^- \to h^- n \pi^0 \nu_\tau$ $(h = K; \pi; n = 0..4)$

Motivation

- ullet au decays with neutrals in final state poorly measured
- input to $|V_{us}|_{incl}$ estimated from $\tau \to s$ inclusive

Event selection $au^- o h^- n \pi^0 u_{\tau}$

Selection requirements

- two oppositely charged tracks from IP: ℓ^{\pm} (tag), K^{\pm} or π^{\pm} (sig.)
- quality cuts on track and photon
- reconstruct up to 4 $\pi^0 \rightarrow \gamma \gamma$
- reject events with additional photons
- ullet event topology consistent with au decay
- cuts on missing mass of event and signal τ -decay to reject bkg. $(e^+e^- \to \ell^+\ell^-, \tau \to \eta X \nu)$
- reject two-photon events:

$$\frac{p_T}{E_{miss}} = \frac{(\vec{p}_1^{CM} + \vec{p}_2^{CM})_T}{\sqrt{s} - p_1^{CM} - p_2^{CM}} > 0.2$$

π^0 efficiency correction

- compare control channels $au^- o t^-
 u_ au$ with $au^- o t^- \pi^0
 u_ au$ (track t no PID except e^\pm -veto)
- correction factor: $\eta = \frac{N(\tau^- \to t^- \pi^0 \nu_\tau)^{data}}{N(\tau^- \to t^- \pi^0 \nu_\tau)^{MC}} \frac{N(\tau^- \to t^- \nu_\tau)^{MC}}{N(\tau^- \to t^- \nu_\tau)^{data}}$
- applied to each reconstructed π^0 in MC as function of p_{π^0}

distribution of the π^0 efficiency correction factor

Correction of PID efficiency

- standard BABAR PID: correct for data MC difference
- custom correction: π^{\pm} as π^{\pm} , K^{\pm} as K^{\pm} PID; π^{\pm} as K^{\pm} mis-ID
 - use control samples of 3-1-topology $\tau\tau$ events:

$$\bullet \quad \tau^- \to \pi^- \pi^+ \pi^- \nu_\tau$$

$$\bullet \quad \tau^- \to \pi^- K^+ K^- \nu_\tau$$

• identify 2 of the three tracks ⇒ ID third track

Split-off correction

- Split-offs: separated neutrons from hadronic showers in the EMC can travel and cause a shower which is then identified as photon
- not well modeled in MC ⇒ apply correction obtained on data
- use the $\tau^- \to \pi^- \nu_{ au}$ control channel
- correction factor $\eta = \frac{N^{data}(d < 40cm) N^{MC}(d < 40cm)}{N^{data}}$
- applied to each simulated event with hadron

Distance to closest neutral cluster

- a) $\tau^- \to \mu^- \nu_\tau \bar{\nu}_\mu$
- b) $\tau^- \to \pi^- \nu_\tau$

80 100 120 140

Reconstructed signal hadron momentum

- data MC comparison after event selection
- all corrections to MC applied

Signal extraction

- signal events reconstructed in the wrong signal channel are taken into account
- use migration matrix $\mathbf{M} = M_{ki}$:
 - element M_{ki} : probability of reconstructing true signal k in reconstruction channel i estimated on MC
- inverting **M** and solve linear equation:

$$ullet$$
 $ec{N}^{prod} = \mathbf{M}^{-1} \left(ec{N}^{sel} - \sum_{l} ec{N}^{sel}_{rest(l)}
ight)$

- \vec{N}^{prod} : true produced signal events
- \vec{N}^{sel} : measured number of selected data events
- $\vec{N}^{sel}_{rest(I)}$: number of selected non-signal bkg. events taken from MC prediction
- branching fractions are then calculated as: $\mathcal{B}=1-\sqrt{1-\frac{N^{prod}}{\mathcal{L}\sigma}}$ (takes into account that both τ in the event can decay to signal final state)

Spectral function
$$\tau^- \to K^- K_s \nu_{\tau}$$
 Branching fractions $\tau^- \to h^- n \pi^0 \nu_{\tau}$ Summary

- several sources systematic uncertainties evaluated using toys:
 - vary inputs according to their uncertainty
 - assign RMS of results as uncertainty
- additional syst. uncertainties currently investigated: MC modeling

au - Decay mode	$K^-\nu_{ au}$	$K^-\pi^0\nu_{ au}$	$K^-2\pi^0\nu_{ au}$	$K^-3\pi^0 u_{ au}$	$\pi^-3\pi^0 u_ au$	$\pi^{-}4\pi^{0}\nu_{ au}$
	$(\times 10^{-3})$	$(\times 10^{-3})$	$(\times 10^{-4})$	$(\times 10^{-4})$	$(\times 10^{-2})$	$(\times 10^{-4})$
Branching fraction	7.174	5.054	6.151	1.246	1.168	9.020
Stat. uncertainty	0.033	0.021	0.117	0.164	0.006	0.400
Syst. uncertainty	0.213	0.148	0.338	0.238	0.038	0.652
Total uncertainty	0.216	0.149	0.357	0.289	0.038	0.765
Stat. uncertainty [%]	0.46	0.41	1.91	13.13	0.52	4.44
Syst. uncertainty [%]	2.97	2.93	5.49	19.12	3.23	7.23
Total uncertainty [%]	3.00	2.95	5.81	23.19	3.27	8.48
ϵ_{signal} [%]	0.27	0.27	0.87	3.99	0.27	1.50
ϵ_{bkg} [%]	0.15	0.15	0.87	6.32	0.11	1.67
Background B's[%]	0.18	0.30	1.44	11.52	0.21	3.49
BABAR PID [%]	0.15	0.11	0.18	0.71	0.08	0.20
Custom PID [%]	1.83	1.55	1.78	2.56	0.20	0.26
Muon mis-id [%]	1.48	0.01	0.00	0.00	0.00	0.00
$\# \tau^+ \tau^-$ pairs [%]	0.79	0.93	1.40	2.61	0.71	0.98
Track efficiency [%]	0.43	0.50	0.76	1.42	0.38	0.53
Split-off correction [%]	1.52	1.84	2.77	5.17	1.40	1.94
π^0 correction [%]	0.03	1.20	3.63	10.56	2.76	5.36
$\pi 5\pi^0 ightarrow \pi 4\pi^0$ migr. [%]	0.00	0.00	0.00	0.02	0.04	1.08
$K4\pi^0 \rightarrow K3\pi^0$ migr. [%]	0.00	0.00	0.13	4.78	0.00	0.00 16 / 18

- comparison results this analysis, HFLAV average, and selection of measurements
- NOTE: HFLAV averages contain more inputs than shown here

Summary spectral function $au^- o K^- K_S u$

- ullet most precise determination of spectral function for $au^- o K^- K_S
 u$
- preprint server: arXiv:1806.10280 (SLAC-PUB-17286)
- is submitted to PRD

Summary branching fraction measurements $au^- o h^- n \pi^0 u$

- reconstructed signal channels:
 - $\tau^- \to K^- n \pi^0 \nu$, n=0...3
 - $\tau^- \to \pi^- n \pi^0 \nu$, n=3,4
- for most channels most precise result up to now
- analysis in final stage of approval by collaboration
- publication in preparation
- ullet results for $|V_{us}|$ added soon

Spectral function $\tau^- \to K^- K_{\rm S} \nu_{\tau}$ Branching fractions $\tau^- \to h^- n \pi^0 \nu_{\tau}$ Summary

Backup

Numerical results $au^- o h^- n \pi^0 u_ au$

$$\mathcal{B}(\tau^{-} \to K^{-}\nu_{\tau}) = (7.174 \pm 0.033 \pm 0.213) \times 10^{-3},$$

$$\mathcal{B}(\tau^{-} \to K^{-}\pi^{0}\nu_{\tau}) = (5.054 \pm 0.021 \pm 0.148) \times 10^{-3},$$

$$\mathcal{B}(\tau^{-} \to K^{-}2\pi^{0}\nu_{\tau}) = (6.151 \pm 0.117 \pm 0.338) \times 10^{-4},$$

$$\mathcal{B}(\tau^{-} \to K^{-}3\pi^{0}\nu_{\tau}) = (1.246 \pm 0.164 \pm 0.238) \times 10^{-4},$$

$$\mathcal{B}(\tau^{-} \to \pi^{-}3\pi^{0}\nu_{\tau}) = (1.168 \pm 0.006 \pm 0.038) \times 10^{-2},$$

$$\mathcal{B}(\tau^{-} \to \pi^{-}4\pi^{0}\nu_{\tau}) = (9.020 \pm 0.400 \pm 0.652) \times 10^{-4}.$$

Number of selected events $au^- o h^- n \pi^0 u_ au$

Selected mode	data	bkg from MC	ϵ from MC [%]
$\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau$	1075810	62364.0	0.74
$ au^- o \pi^- u_ au$	1473594	340960.0	1.278
$ au^- ightarrow \pi^- \pi^0 u_ au$	6742483	368918.5	3.28
$ au^- ightarrow \pi^- 2\pi^0 u_ au$	1268108	75058.7	1.55
$ au^- o \pi^- 3 \pi^0 u_ au$	58598	9698.1	0.49
$ au^- o \pi^- 4 \pi^0 u_ au$	1706	729.5	0.12
$ au^- o K^- u_ au$	80715	18669.3	0.99
$ au^- ightarrow extbf{K}^- \pi^0 u_ au$	146948	51983.2	2.16
$ au^- ightarrow \mathit{K}^- 2\pi^0 u_ au$	17930	11128.8	1.34
$ au^- o K^- 3 \pi^0 u_ au$	1863	1467.7	0.13

Numerical results for the spectral function of $au o K^- K_S u_ au$

$m_{K^-K_S}({\rm GeV/c^2})$	$N_s/N_{tot} \times 10^3$	$V \times 10^3$
0.98 - 1.02	5.6 ± 1.4	$0.071 \pm 0.018 \pm 0.006$
1.02 - 1.06	26.0 ± 2.7	$0.331 \pm 0.034 \pm 0.026$
1.06 - 1.10	46.0 ± 3.2	$0.593 \pm 0.042 \pm 0.042$
1.10 - 1.14	70.8 ± 3.5	$0.934 \pm 0.046 \pm 0.056$
1.14 - 1.18	84.4 ± 3.4	$1.148 \pm 0.047 \pm 0.057$
1.18 - 1.22	92.3 ± 3.3	$1.309 \pm 0.046 \pm 0.052$
1.22 - 1.26	98.2 ± 3.2	$1.468 \pm 0.048 \pm 0.044$
1.26 - 1.30	98.4 ± 3.2	$1.569 \pm 0.050 \pm 0.042$
1.30 - 1.34	96.3 ± 3.0	$1.663 \pm 0.052 \pm 0.042$
1.34 - 1.38	90.2 ± 2.9	$1.715 \pm 0.052 \pm 0.039$
1.38 - 1.42	87.8 ± 3.1	$1.873 \pm 0.066 \pm 0.039$
1.42 - 1.46	65.1 ± 2.6	$1.597 \pm 0.064 \pm 0.032$
1.46 - 1.50	57.3 ± 2.5	$1.666 \pm 0.073 \pm 0.032$
1.50 - 1.54	38.1 ± 2.5	$1.361 \pm 0.090 \pm 0.023$
1.54 - 1.66	36.9 ± 2.4	$0.785 \pm 0.049 \pm 0.013$
1.66 - 1.78	6.6 ± 10.2	$0.986 \pm 1.520 \pm 0.014$

• reference: arXiv:1806.10280

Shown uncertainties are statistical and systematic, respectively.

Event selection

Selection requirements

- 4 tracks from IP (total charge zero)
- Particle IDentification (PID) for lepton $(e^{\pm} \text{ or } \mu^{\pm})$ and kaon (opposite charge)
- quality cuts on track momentum and angle: good PID; and reject $e^+e^- \rightarrow e^-e^+$ and $e^+e^- \rightarrow \mu^-\mu^+$
- remaining tracks: $K_S \to \pi^- \pi^+$ with $m_{\pi\pi}$ within 25 MeV of $m(K_S)$
- flight length of $K_S > 1cm$
- $\sum E_{neutral} < 2GeV$
- Thrust > 0.875 (charged tracks)
- angle KK_S lepton $> 110^\circ$

Selection efficiency as function of m_{KKs}

• average selection efficiency $\approx 13\%$

Signal extraction by migration matrix method

 number of selected signal events for reconstructed channel i can be written as:

$$N_{\mathrm{sig}}^{\mathrm{sel(i)}} = N^{\mathrm{sel(i)}} - \sum_{j
eq i} N_{j}^{\mathrm{sel(i)}} - \sum_{l} N_{\mathrm{rest(l)}}^{\mathrm{sel(i)}}$$

• this can be rewritten as matrix equation relating the number of produced event N^{prod} with the selected events:

$$\sum_{j} M_{ij} N^{prod(j)} = N^{sel(i)} - \sum_{l} N^{sel(i)}_{rest(l)}$$
 where M_{ij} is the probability to reconstruct the signal decay j in reconstructed channel i , estimated on MC

• by inverting the matrix $\mathbf{M} = M_{ij}$ one obtains a relation between the number of produced events \vec{N}^{prod} , the number selected data events \vec{N}^{sel} , and the number of non-signal bkg events \vec{N}^{sel}_{rest} :

$$ec{\mathcal{N}}^{ extit{prod}} = \mathbf{M}^{-1} \left(ec{\mathcal{N}}^{ extit{sel}} - \sum_{l} ec{\mathcal{N}}^{ extit{sel}}_{ extit{rest}(l)}
ight)$$

- $\vec{N}_{rest(I)}^{sel}$ is taken from MC prediction
- ullet branching fractions are then calculated as: $B=1-\sqrt{1-rac{N^{prod}}{\mathcal{L}\sigma}}$

Subtraction of non - K_S background

- subtract non-K_S background by using sidebands and assuming a flat distribution
 - reconstructed events composed of background and true K_S $N = N_{K_S} + N_b$
 - number of events in the side-band:

$$N_{sb} = \alpha N_b + \beta N_{K_S}$$

- solve for the number of true K_S : $N_{K_S} = \frac{\alpha N N_{Sb}}{\alpha \beta}$
- ullet subtract bin by bin in m_{KK_S}
- fraction of non- K_S bkg: $\approx 10\%$ for $m_{KK_S} < 1.3 GeV$ increases to up to 50% for $m_{KK_S} > 1.6 \, GeV$

Subtraction of background including π^0

- main bkg contributions:
 - $\tau^- \to K^- K_S \pi^0 \nu_\tau$ (79%);
 - $\tau^- \to \pi^- K_S \nu_\tau$ (10%);
 - $\tau^- \to \pi^- K_S \pi^0 \nu_\tau$ (3%)
 - mis-identified lepton (7%) from $\tau^- \to \pi^- \nu_{\tau}$ and $\tau^- \to \pi^- \pi^0 \nu_{\tau}$
- reconstruct π^0 and sub-divide sample:
 - at least one π^0 : $N_{1\pi^0} = \epsilon_s N_s + \epsilon_h N_h$
 - zero π^0 : $N_{0\pi^0} = (1 - \epsilon_s)N_s + (1 - \epsilon_b)N_b$
- ullet solve for number of signal events N_S
- remaining bkg. subtracted using MC

Event Selection

Event selection $au^- o h^- n \pi^0 u_{ au}$

- two oppositely charg. tracks from IP: PID ℓ^{\pm} (tag), K^{\pm} or π^{\pm} (sig.)
- reconstruct up to 4 $\pi^0 \rightarrow \gamma \gamma$
- reject events with additional photons
- several track and photon quality cuts: ensure good PID; reject bkg
- 0.88 < thrust of event T < 0.99
- angle between lepton and signal hadron > 2.95rad
- cuts on missing mass of event and signal au-decay to reject bkg. $(e^+e^- o \ell^+\ell^-)$
- reject two-photon events: $\frac{p_T}{E_{miss}} = \frac{(\bar{p}_1^{CM} + \bar{p}_2^{CM})_T}{\sqrt{s} p_1^{CM} p_2^{CM}} > 0.2$