The unexplored landscape of top-partner decays

K.C. Kong University of Kansas

ICHEP2018

based on work (1807.nextweek [hep-ph]) in collaboration with

How to Search for BSM

- There isn't a unique way. No right or wrong approach.
- Start with precision measurement of SM. Use Higgs / top quark.
- We have many "templates" for BSM physics.
- Well motivated models: Supersymmetry, extra dimensions, strong dynamics etc
- OSET: On-Shell Effective Theories (event topology with kinematics only)
- Effective Operators
- Simplified Models
- Alternatively, we propose a strategy for searching for theoretically-unanticipated new
 physics which avoids a large trials factor by focusing on experimental strengths.
 Searches for resonances decaying into pairs of visible particles are experimentally
 very powerful due to the localized mass peaks and have a rich history of discovery.
 - Yet, due to a focus on subsets of theoretically-motivated models, the landscape of such resonances is far from thoroughly explored.

- Well motivated models: Supersymmetry, extra dimensions, strong dynamics etc
- OSET: On-Shell Effective Theories (event topology with kinematics only)
- Effective Operators
- Simplified Models
- Alternatively, we propose a strategy for searching for theoretically-unanticipated new physics which avoids a large trials factor by focusing on experimental strengths.
 Searches for resonances decaying into pairs of visible particles are experimentally very powerful due to the localized mass peaks and have a rich history of discovery.
 - Yet, due to a focus on subsets of theoretically-motivated models, the landscape of such resonances is far from thoroughly explored.

Unexplored Landscape of Two-Body Resonances

 Let is consider all possible combinations of two reconstructed objects (putting aside theoretical constraints.)

e	μ	au	γ	j	b	t	W	Z	h
\overline{e}									
μ									
au									
γ									
j									
b									
t									
W									
Z									
h									

Unexplored Landscape of Two-Body Resonances

 Let is consider all possible combinations of two reconstructed objects (putting aside theoretical constraints.)

	e	μ	au	γ	j	b	t	W	Z	h
\overline{e}	$Z', H^{\pm\pm}$		$R\!\!\!/, H^{\pm\pm}$	L^*	LQ, R	LQ,R	LQ,R	L^*, ν_{KK}	L^*, e_{KK}	L^*
μ		$Z', H^{\pm\pm}$		L^*	$LQ, ot\!\!R$	$LQ, R\!\!\!/$	$LQ, R\!\!\!/$	L^*, u_{KK}	L^*, μ_{KK}	L^*
au			$Z', H, H^{\pm\pm}$	L^*		$LQ, R\!\!\!/$	$LQ, R\!\!\!/$	L^*, u_{KK}	L^*, au_{KK}	L^*
γ				H,G_{KK},\mathcal{Q}	Q^*	Q^*	Q^*	W_{KK}, \mathcal{Q}	H,\mathcal{Q}	Z_{KK}
j					Z', ρ, G_{KK}	, ,		Q^*,Q_{KK}	Q^*, Q_{KK}	Q^{\prime}
b						Z', H	W', R, H^{\pm}	T', Q^*, Q_{KK}	Q^*, Q_{KK}	B'
t							H,G',Z'	T'	T'	T'
W								H, G_{KK}, ρ	W', \mathcal{Q}	H^\pm, \mathcal{Q}, ho
Z									H, G_{KK}, ρ	A, ho
h										H,G_{KK}

TABLE II. Theory models motivating two-body final state resonance searches. Here Z' and W' denote additional gauge bosons, R denotes R-parity violating decays of sparticles in supersymmetry, $H^{\pm\pm}$ denotes doubly-charged Higgs bosons, H denotes additional neutral scalar or pseudoscalar Higgs bosons, L^* and Q^* denote excited fermions, X_{KK} denote various Kaluza-Klein excitations of gravitons or Standard Model fields, ρ denotes neutral or charged techni-rhos, LQ denotes leptoquarks, T', B', Q' denote vector-like top, bottom, and light-flavor quarks, and Q denotes quirks. See also [38].

Unexplored Landscape of Two-Body Resonances

	ℓ	γ	q	g	b	t	W^+	Z	h
ℓ	$(1,2)^*$	$[1,1]^*$	$(\overline{3}, 1(4)/3)^{\diamondsuit \heartsuit}$	[8, 1]*	$(\overline{\bf 3},4/3)^{\diamondsuit\heartsuit}$	$(\overline{3}, 1/3)^{\diamondsuit \heartsuit}$	$[1,0]^*$	$[1,1]^*$	$[1,1]^*$
$ar{\ell}$	(1,0)	$[{f 1},-1]^*$	$(\overline{3}, -2(5^*)/3)^{\diamondsuit \heartsuit}$	$[8, -1]^*$	$(\overline{3}, -2/3)^{\diamondsuit \heartsuit}$	$({f 3},-5/3)^*$	$[{f 1},-2]^*$	$[{f 1},-1]^*$	$[{f 1},-1]^*$
γ	$[1,1]^*$	$({\bf 1},0)$	$[{f \bar{3}},{}^{1(-2)}\!/_{3}]$	(8,0)	$[{f \bar{3}},1/3]$	$[{f ar 3},-2/3]$	(1, -1)	(1,0)	(1,0)
q	$(\bar{3}, {}^{1(4)}/{}_3)^{\diamondsuit \heartsuit}$	$[\bar{\bf 3}, 1(-2)/3]$	(3, -1(2)(-4)/3)	$[\bar{\bf 3}, 1(-2)/3]$	(3, -1(2)/3)	(3, -1(-4)/3)	$[\mathbf{\bar{3}}, -2(-5^*)/3]$	$[\bar{\bf 3}, 1(-2)/3]$	$[\bar{\bf 3}, 1(-2)/3]$
$ar{q}$	$(3, {}^{2(5^*)}/_3)^{\diamondsuit \heartsuit}$	$[3, ^{-1(2)}/_{3}]$		$[3, ^{-1(2)}/_3]$	(1(8), 0(-1))	(1(8), 0(-1))	$[3, ^{-1(-4^*)}/_3]$	$[3, ^{-1(2)}/_3]$	$[3, ^{-1(2)}/_3]$
g	$[8,1]^*$	(8,0)	$[\mathbf{\bar{3}}, 1(-2)/3]$	(1(8), 0)	$[{f \bar{3}},1/3]$	$[{f ar 3}, -2/3]$	(8, -1)	(8,0)	(8,0)
b		$[{f \bar{3}},{}^1\!/{}_3]$	(3, -1(2)/3)	$[\bar{\bf 3},1/3]$	(3, 2/3)	(3, -1/3)	$[\bar{\bf 3}, -2/3]$	$[{f \bar{3}},{}^1\!/3]$	$[{f \bar{3}},{}^1\!/{}_3]$
\overline{b}			(1 (8), 0(-1))	$[{f 3},-1/3]$	(1(8), 0)	(1(8), -1)	$[3, -4/3]^*$	[3, -1/3]	[3, -1/3]
t				$[{f \bar{3}},-2/3]$	(3, -1/3)	(3, -4/3)	$[{f \bar{3}},-5/3]^*$	$[{f ar 3},-2/3]$	$[{f \bar{3}},-2/3]$
$ar{t}$.					(1(8),1)	$({f 1}({f 8}),0)$	[3, -1/3]	[3, 2/3]	[3, 2/3]
W^+						$[\bar{\bf 3},-5/3]^*$	$({f 1},-2)^*$	(1, -1)	(1, -1)
W^{-}							$({\bf 1},0)$	$({f 1},1)$	$({f 1},1)$
Z								$({\bf 1},0)$	$({\bf 1},0)$
h									(1,0)

(): boson resonance

[]: fermionic resonance

*: no possible initial state at the LHC

Possible (QCD, EM) quantum numbers of each 2-body resonance

indicates the existence of a resonant production via treelevel decay coupling, loop-induced processes involving the decay coupling, or the inclusion of additional couplings to quarks / gluons (allowed by quantum numbers).

 \mathcal{L} , \mathcal{L} , or \mathcal{L} indicate the leading production mode in association with 1, 2, 3 and 4 SM particles using the same coupling for production and decay (in 4 flavor scheme).

indicates the unavoidable existence of a pair production mode.

Craig, Draper, Kong, Ng, Whiteson 1610.09392

		ℓ			γ			q			g			b			t		1	W^+			Z			h	
ℓ		É	-&		严	-&	>	ድ	-&		ድ	-&	>	严	-&	>>	严	-&		Э			严	-&		Э	-&
$ar{\ell}$	>	É			严	-&	>	ድ	-&		ድ	-&	>	严	-&		严	-&		严	-&		湮	-&		涭	-&
γ		严	~~	>)		>	ጟ	%	>	እ	-&	>	姚	-&	>	Ě	-&	>	魤	-&	>	Ě		>)	
q	>	¥	-&	>	ጀ	-&	>	>	- &	>	>	− &	>	ጀ	-&	>	ጀ	-&	>	ጀ	- &	>	ጀ	-&	>	ጀ	− &
$ar{q}$	>	¥	-&	>	ጀ	-&	>	>	-&	>	>	-&	>	ጟ		>	ጀ		>	ጀ	- &	>	ኟ	-&	>	ጀ	− &
g		€	-&	>	ኟ	-&	>	>	-&	>) ‱		>	ጀ	-&	>	ኟ	-&	>	ጀ	- &	>	ኟ	-&	>	ኟ	-&
b				>)	-&	>	ጟ	~ &	>	ጟ	-&	>	烑	-&	>	Ě	-&	>	уЩ	-&) ‱	Ě	-&	>	X	− &
$ar{b}$							>	ጀ		>	ኟ	-&	>	Ě		>	€	-&		Ě	- &	>	Ě	-&	>	Ě	-&
t										>	ጀ	-&	>	Ě	-&	>	Æ	-&		Ě	-&	>	Ě	-&	>	Ě	− &
$ar{t}$													>	¥	-&	>	Ě		>	¥	-&	>	Ě	-&	>	Ě	− &
W^+																	Ě	-&		X	- &	>	Ě	-&	>	Ě	-&
W^-) ‱	魤) ‱	€	-&	>	X	− &
Z																						>	Ě		>	Ě	
h																									%	¥	

Survey of n=2 Final State at the LHC

	e	μ	au	γ	j	b	t	\overline{W}	Z	h
\overline{e}	$Z', H^{\pm\pm}$		$R, H^{\pm\pm}$	L^*	LQ, R	LQ,R	LQ,R	L^*, ν_{KK}	L^*, e_{KK}	L^*
μ		$Z', H^{\pm\pm}$, ,	L^*	$LQ, ot\!\!R$	LQ,R	$LQ, R\!\!\!/$	L^*, u_{KK}	L^*, μ_{KK}	L^*
au			$Z', H, H^{\pm\pm}$	L^*	$LQ, ot\!\!R$	LQ,R	$LQ, R\!\!\!/$	L^*, u_{KK}	L^*, au_{KK}	L^*
γ				H,G_{KK},\mathcal{Q}	_	Q^*	Q^*	W_{KK}, \mathcal{Q}	H,\mathcal{Q}	Z_{KK}
j					Z', ρ, G_{KK}			Q^*, Q_{KK}	Q^*, Q_{KK}	Q^{\prime}
b						Z', H	W', R, H^{\pm}	T', Q^*, Q_{KK}	Q^*, Q_{KK}	B'
t							H,G',Z'	T'	T'	T'
W								H, G_{KK}, ρ	W', \mathcal{Q}	H^\pm,\mathcal{Q}, ho
Z									H, G_{KK}, ρ	A, ho
h										H,G_{KK}

Survey of n=2 Final State at the LHC

Survey of n=2 Final State at the LHC

	e	μ	τ	γ	j	b	t	\overline{W}	Z	h
\overline{e}	$\pm \mp [4], \pm \pm [5]$	$\pm \pm [5, 6] \pm \mp [6, 7]$	[7]	Ø	Ø	Ø	Ø	Ø	Ø	Ø
μ		$\pm \mp [4], \pm \pm [5]$	[7]	Ø	\varnothing	\varnothing	\varnothing	\varnothing	Ø	Ø
au			[8]	Ø	\varnothing	\varnothing	[9]	\varnothing	Ø	Ø
γ				[10]	[11-13]	\varnothing	\varnothing	[14]	[14]	Ø
j					[15]	[16]	[17]	[18]	[18]	Ø
b						[16]	[19]	Ø	Ø	Ø
t							[20]	[21]	Ø	Ø
W								[22-25]	[23, 24, 26, 27]	[28-30]
Z									[23, 25, 31]	[28, 30, 32, 33]
h									-	[34–37]

- Existing two-body exclusive final state resonance searches at 7 and 8 TeV LHC, with striking features that most diagonal entries have existing searches, whereas most off-diagonal entries do not. (Numbers represent ATLAS/CMS references.)
- Ø symbol indicates no existing searches at the LHC (7 and 8 TeV).
- No Tevatron analyses included. No 13 TeV analyses included.

Top partner

- Color triplet fermion with charge 2/3: spin 1/2 or spin 3/2
- Consider mixing between SM top (t) and Top partner (T)
- T inherits interaction of SM top quark

	Wb	tZ	tH
Wb			
tZ			
tH			

Top partner

- Color triplet fermion with charge 2/3: spin 1/2 or spin 3/2
- Consider mixing between SM top (t) and Top partner (T)
- T inherits interaction of SM top quark

	Wb	tZ	tH	tg	$t\gamma$
Wb					
tZ					
tH					
tg					
$t\gamma$					

Top partner

- Color triplet fermion with charge 2/3: spin 1/2 or spin 3/2
- Consider mixing between SM top (t) and Top partner (T)
- T inherits interaction of SM top quark

	Wb	tZ	tH	tg	$t\gamma$	$t(S \to gg)$
Wb						
tZ						
tH						
tg						
$t\gamma$						
$t(S \to gg)$						

o partner

charge 2/3: spin 1/2 or spin 3/2

n SM top (t) and Top partner (T)

3M top quark

	Wb	tZ	tH	tg	$t\gamma$	$t(S \to gg)$
Wb						
tZ						
tH						
tg				1	1	
$t\gamma$						
$t(S \to gg)$						

Top partner Interaction with gluon / photon

- Pair production of color triplet fermions at the LHC is given by SM QCD.
- Spin 1/2

$$\mathcal{L}_{EFT} = \frac{c_3 g_3}{\Lambda} \overline{T}_L \sigma^{\mu\nu} T^A t_R G^A_{\mu\nu} + \frac{c_2 g_2}{\Lambda} \overline{T}_L \sigma^{\mu\nu} \frac{\sigma^a}{2} t_R W^a_{\mu\nu} + \frac{c_1 g_1}{\Lambda} \overline{T}_L \sigma^{\mu\nu} Y_{t_R} t_R B_{\mu\nu} + \text{h.c.}$$

$$\mathcal{L}_{EFT}=c_g\overline{T}_L\sigma^{\mu\nu}T^At_RG^A_{\mu\nu}+c_\gamma\overline{T}_L\sigma^{\mu\nu}t_RF_{\mu\nu}+c_Z\overline{T}_L\sigma^{\mu\nu}t_RZ_{\mu\nu}+\mathrm{h.c.}$$
 Kuhn, Zerwas, 1984

De Rujula, Maiani, Petronzio, 1984

• Spin 3/2

Baur, Hinchliffe, Zeppenfeld, 1987

Baur, Spira, Zerwas, 1990

$$\mathcal{L}\ni g_3\bar{\psi}_{\alpha}\left(\frac{3z^2+2z+1}{2}\gamma^{\alpha}\gamma^{\mu}\gamma^{\beta}+zg^{\alpha\mu}\gamma^{\beta}+z\gamma^{\alpha}g^{\mu\beta}+g^{\beta\alpha}\gamma^{\mu}\right)T^A\psi_{\beta}G^A_{\mu}\;,\;\;\text{Rarita, Schwingger 1946}$$

$$\mathcal{L}_{EFT} = i \frac{g_i c_i}{\Lambda} \bar{\psi}_{\mu} \left(g^{\mu \alpha} + z \gamma^{\mu} \gamma^{\alpha} \right) \gamma^{\beta} T_i^a P_{L/R} t F_{i,\alpha\beta}^a + h.c.,$$

Hassanain, March-Russell, Rosa, 2009

Dicus, Karabacak, Nandi, Rai, 2012

Stirling, Vryonidou, 2012

Alhazmi, Kim, Kong, Lewis 2018

Production

- Pair production of color triplet fermions at the LHC is given by SM QCD.
- See talk by I. Lewis for single production.

- Current limit
 - mT > 1.2 TeV for spin 3/2
 - mT > 930 GeV for spin 1/2

Alhazmi, Kim, Kong, Lewis 2018

Decays

$$\Gamma = \frac{\mathcal{C}}{64\pi} \frac{m_T^3}{\Lambda^2} \left(1 - \frac{m_t^2}{m_T^2} \right)^3, \qquad \text{for spin } \frac{1}{2}, \qquad g = \frac{\mathcal{C}}{192\pi} \frac{m_T^3}{\Lambda^2} \left(1 - \frac{m_t^2}{m_T^2} \right)^3 \left(3 + \frac{m_t^2}{m_T^2} \right), \qquad \text{for spin } \frac{3}{2}, \qquad g = \frac{\mathcal{C}}{\mathbb{Z}} \frac{m_T^3}{\Lambda^2} \left(1 - \frac{m_t^2}{m_T^2} \right)^3 \left(3 + \frac{m_t^2}{m_T^2} \right), \qquad \text{for spin } \frac{3}{2}, \qquad g = \frac{1}{2} \frac{m_T^3}{\Lambda^2} \left(1 - \frac{m_t^2}{m_T^2} \right)^3 \left(3 + \frac{m_t^2}{m_T^2} \right), \qquad \text{for spin } \frac{3}{2}, \qquad g = \frac{1}{2} \frac{m_T^3}{\Lambda^2} \left(1 - \frac{m_t^2}{m_T^2} \right)^3 \left(3 + \frac{m_t^2}{m_T^2} \right), \qquad \text{for spin } \frac{3}{2}, \qquad g = \frac{1}{2} \frac{m_T^3}{\Lambda^2} \left(1 - \frac{m_t^2}{m_T^2} \right)^3 \left(3 + \frac{m_t^2}{m_T^2} \right), \qquad \text{for spin } \frac{3}{2}, \qquad g = \frac{1}{2} \frac{m_T^3}{\Lambda^2} \left(1 - \frac{m_t^2}{m_T^2} \right)^3 \left(3 + \frac{m_t^2}{m_T^2} \right), \qquad \text{for spin } \frac{3}{2}, \qquad g = \frac{1}{2} \frac{m_T^3}{\Lambda^2} \left(1 - \frac{m_t^2}{m_T^2} \right)^3 \left(3 + \frac{m_t^2}{m_T^2} \right), \qquad \text{for spin } \frac{3}{2}, \qquad g = \frac{1}{2} \frac{m_T^3}{\Lambda^2} \left(1 - \frac{m_t^2}{m_T^2} \right)^3 \left(3 + \frac{m_t^2}{m_T^2} \right), \qquad \text{for spin } \frac{3}{2}, \qquad g = \frac{1}{2} \frac{m_T^3}{\Lambda^2} \left(1 - \frac{m_t^2}{m_T^2} \right)^3 \left(3 + \frac{m_t^2}{m_T^2} \right), \qquad \text{for } T = \frac{1}{2} \frac{m_T^3}{\Lambda^2} \left(1 - \frac{m_t^2}{m_T^2} \right)^3 \left(3 + \frac{m_t^2}{m_T^2} \right), \qquad \text{for } T = \frac{1}{2} \frac{m_T^3}{\Lambda^2} \left(1 - \frac{m_t^2}{m_T^2} \right)^3 \left(3 + \frac{m_t^2}{m_T^2} \right), \qquad \text{for } T = \frac{1}{2} \frac{m_T^3}{\Lambda^2} \left(1 - \frac{m_t^2}{m_T^2} \right)^3 \left(3 + \frac{m_t^2}{m_T^2} \right), \qquad \text{for } T = \frac{1}{2} \frac{m_T^3}{M_T^3} \left(1 - \frac{m_t^2}{m_T^2} \right)^3 \left(3 + \frac{m_t^2}{m_T^2} \right), \qquad \text{for } T = \frac{1}{2} \frac{m_T^3}{M_T^3} \left(1 - \frac{m_t^2}{m_T^2} \right)^3 \left(3 + \frac{m_t^2}{m_T^2} \right), \qquad \text{for } T = \frac{1}{2} \frac{m_T^3}{M_T^3} \left(1 - \frac{m_t^2}{m_T^2} \right)^3 \left(3 + \frac{m_t^2}{m_T^2} \right), \qquad \text{for } T = \frac{1}{2} \frac{m_T^3}{M_T^3} \left(1 - \frac{m_t^2}{m_T^3} \right) \left($$

$$\Gamma(T \to \gamma t) : \Gamma(T \to Z t) : \Gamma(T \to g t) = (eQ_t)^2 : (eQ_t \tan \theta_W)^2 : g_3^2 C_2(R)$$

= 0.021 : 0.00601 : 0.9725.

- Benchmark point
 - mT = 1 TeV
 - $BR(T \rightarrow t \text{ photon}) = 3\%$ and $BR(T \rightarrow t \text{ gluon}) = 97\%$
- Assume narrow width / no tree level decays

- Two parameters
 - mT
 - BR(T -> t photon)

$t \bar{t} g g$ Channel

- Basic cuts (consider semi-leptonic decay of ttbar at the 14 TeV LHC)
 - at least 1 slim jet with $p_T^j > 30 \; \mathrm{GeV}$ and $|\eta^j| < 2.5$
 - at least 1 lepton with $p_T^\ell > 30~{
 m GeV}$ and $|\eta^\ell| < 2.5$

$$p_T^{\ell}/p_T^{\Sigma} > 0.7$$
 within $\Delta R = 0.3$ isolation cone

- at least 1 hard fat jet with $p_T^j > 350 \; {\rm GeV}$ and $|\eta^j| < 2.5$
- at least 1 hadronic top and 1 leptonic top (template overlap method)
- additionally, require $H_T > 700 \, \mathrm{GeV}$ and $E_T > 50 \, \mathrm{GeV}$
- Used FenRules, MadGraph5_aMC@NLO, PYTHIA6, Fastjet.
- Used Template Overlap Method for boosted hadronic / leptonic top tagging.

$t \bar{t} g g$ Channel

Abbreviations	Backgrounds	Matching	$\sigma \cdot \mathrm{BR}(\mathrm{fb})$
$t\overline{t}$	$t\overline{t} + \text{jets}$	4-flavor	$2.91 \times 10^3 \text{ fb}$
Single t	tW + jets	5-flavor	$4.15 \times 10^{3} \text{ fb}$
\int Single t	tq + jets	4-flavor	77.2 fb
W	W + jets	5-flavor	$4.96 \times 10^{3} \text{ fb}$
VV	WW + jets	4-flavor	111 fb
V V	WZ + jets	4-flavor	43.5 fb

CMS, 1311.5357 (8 TeV)

CMS, 1711.10949 (13 TeV)

$$H_{T}^{reco} = p_{T,t_{had}}^{reco} + p_{T,t_{lep}}^{reco} + p_{T,g_1}^{reco} + p_{T,g_2}^{reco}$$

• b-tagging would help reduce the systematic uncertainty.

$t\bar{t}gg$ channel	Signal [fb]	$t\overline{t}$ [fb]	Single t [fb]	W [fb]	VV [fb]	σ_{dis}	σ_{excl}
Basic cuts	2.8	1.1×10^3	2.6×10^{3}	2.1×10^{3}	68	2.0	2.0
$N_{t_{had}} = 1$	1.4	650	790	390	14	1.8	1.8
$N_{t_{lep}} = 1$	0.60	140	51	28	1.6	2.2	$\mid 2.2 \mid$
$p_{T,\{g_1,g_2\}}^{reco} > \{250,150\} \text{ GeV}$	0.35	9.17	4.63	2.48	0.19	4.78	$\mid 4.76 \mid$
$H_T^{reco} > 1600 \text{ GeV}$	0.29	4.86	3.42	1.58	0.12	5.05	$\mid 5.03 \mid$
$750 < m_{T_{1,2}}^{reco} < 1100 \text{ GeV}$	0.16	0.84	0.62	0.23	0.017	6.73	6.63
b -tag on $t_{\rm had}$	0.10	0.51	0.29	5.6×10^{-3}	1.0×10^{-3}	5.90	5.78
b -tag on $t_{ m lep}$	0.10	0.49	0.21	0.016	1.7×10^{-4}	6.40	6.26
b -tag on $t_{\rm had} \ \& \ t_{\rm lep}$	0.061	0.30	0.084	5.1×10^{-4}	1.0×10^{-5}	5.28	5.15

• mT = 1 TeV, BR(T -> t photon) = 3%, BR(T -> t gluon) = 97%

$ttg\gamma$ Channel

433		Matching	
Abbreviations	obreviations Backgrounds		$\sigma \cdot \mathrm{BR}(\mathrm{fb})$
$t \overline{t} \gamma$	$t\overline{t} + \gamma + \text{jet}$	4-flavor	1.0 fb
<i>t</i> ~	$tW + \gamma + \text{jets}$	5-flavor	1.9 fb
$t\gamma$	$t + \gamma + \text{jets}$	4-flavor	$0.085 \; \mathrm{fb}$
$W\gamma$	$W + \gamma + \text{jets}$	5-flavor	5.4 fb
$VV\gamma$	$WW + \gamma + \text{jets}$	4-flavor	0.17 fb
v v · y	$WZ + \gamma + \text{jets}$	4-flavor	$0.057 \; \mathrm{fb}$

Photon isolation

$$p_T^{\Sigma}/p_T^{\gamma} < 0.1$$
 within $\Delta R = 0.4$

$$p_T^{\gamma} > 300 \,\mathrm{GeV}$$
 and $|\eta^{\gamma}| < 2.5$

$$\epsilon_{j\rightarrow\gamma} = \begin{cases} 5.3\cdot 10^{-4} \exp\left(-6.5\left(\frac{p_{T,j}}{60.4~\mathrm{GeV}}-1\right)^2\right) \;,\; \text{(Pt < 65~\mathrm{GeV})} \\ 0.88\cdot 10^{-4} \left[\exp\left(-\frac{p_{T,j}}{943~\mathrm{GeV}}\right) + \frac{248~\mathrm{GeV}}{p_{T,j}}\right] \text{(Pt > 65~\mathrm{GeV})} \end{cases}$$

$t \bar{t} g \gamma$ Channel

Abbreviations Backgrounds		Matching	$\sigma \cdot \mathrm{BR}(\mathrm{fb})$	
$t\overline{t}\gamma$	$t\overline{t} + \gamma + \mathrm{jet}$	4-flavor	1.0 fb	
<i>t</i> • .	$tW + \gamma + \text{jets}$	5-flavor	1.9 fb	
$t\gamma$	$t + \gamma + \text{jets}$	4-flavor	$0.085 \; \mathrm{fb}$	
$W\gamma$	$W + \gamma + \text{jets}$	5-flavor	5.4 fb	
$VV\gamma$	$WW + \gamma + \text{jets}$	4-flavor	0.17 fb	
<i>v v ' y</i>	$WZ + \gamma + \text{jets}$	4-flavor	$0.057 \; { m fb}$	

Photon isolation

$$p_T^{\Sigma}/p_T^{\gamma} < 0.1$$
 within $\Delta R = 0.4$

$$p_T^{\gamma} > 300 \,\mathrm{GeV}$$
 and $|\eta^{\gamma}| < 2.5$

$t\bar{t}g\gamma$ channel	Signal [fb]	$tt\gamma$ [fb]	$t\gamma$ [fb]	$W\gamma$ [fb]	$VV\gamma$ [fb]	σ_{dis}	σ_{excl}	
Basic cuts	0.13	0.32	1.1	2.4	0.10	3.6	3.6	
$N_{t_{had}} = 1$	0.076	0.22	0.39	0.47	0.022	3.9	3.8	_ >
$N_{t_{lep}} = 1$	0.033	0.061	0.030	0.029	2.1×10^{-3}	4.9	4.7	
$ \{p_T^{\gamma}, p_{T,g}^{reco}\}\rangle $ {300, 140} GeV	0.021	0.023	0.0114	0.0118	8.8×10^{-4}	5.1	4.7	
$H_T > 1600 \text{ GeV}$	0.02	0.016	9.5×10^{-3}	9.7×10^{-3}	7.4×10^{-4}	5.2	4.8	
$900 < m_{T_{\gamma}}^{reco} < 1100 \text{ GeV}$ $700 < m_{T_g}^{reco} < 1100 \text{ GeV}$	0.015	3.1×10^{-3}	1.5×10^{-3}	1.3×10^{-3}	1.1×10^{-4}	8.1	6.6	
b -tag on $t_{\rm had}$	9.6×10^{-3}	2.0×10^{-3}	7.4×10^{-4}	1.4×10^{-4}	6.1×10^{-6}	7.2	5.7	
b -tag on $t_{\rm lep}$	9.4×10^{-3}	1.8×10^{-3}	4.8×10^{-4}	2.7×10^{-5}	2.9×10^{-6}	7.6	5.8	
b -tag on $t_{\rm had} \& t_{\rm lep}$	6.2×10^{-3}	1.2×10^{-3}	1.4×10^{-4}	2.1×10^{-6}	1.9×10^{-7}	6.4	4.8	2

Combined results

The required-integrated luminosity (in ab^{-1}) for 5σ discovery and 2σ exclusion (left), and the minimum branching fraction of $T \to t\gamma$ for a fixed luminosity of $3 ab^{-1}$ (right) as a function of the top-partner mass (m_T in TeV) for spin- $\frac{1}{2}$ top partner. In both plots, the 5σ discovery result for $t\bar{t}gg$ ($t\bar{t}g\gamma$) is shown in black-solid (black-dot-dashed) curve, while the 2σ exclusion is shown in blue-long-dashed (blue-short-dashed) curve, respectively. The green- and cyan-shade areas represent the combined 5σ discovery and 2σ exclusion, considering both $t\bar{t}gg$ and $t\bar{t}g\gamma$ channels. Dotted curves represent the corresponding results including 20% systematic uncertainty in the estimation of the background.

Combined results

Summary

- Discussed diverse Top parter decays, depending on the mixing angle.
- ullet Two interesting decays: tar t gg and $tar t g\gamma$
 - Radiative decay modes are complementary to the conventional decay modes and become important when existing experimental limits get stronger (heavy Top partner or small mixing angle).
 - Boosted top tagging improves signal sensitivity.
 - Better signal sensitivity with only 2-3% BR into top + photon final state.

	Wb	tZ	tH	tg	$t\gamma$	$t(S \to gg)$
Wb						
tZ						
tH						
tg						
$t\gamma$						
$t(S \to gg)$						

$$\epsilon_{\gamma \to \gamma} = 0.863 - 1.07 \cdot e^{-p_{T,\gamma}/34.8 \text{ GeV}}$$

Goncalves, Han, Kling, Plein, Takeuchi 2018

$$\epsilon_{j \to \gamma} = \begin{cases} 5.3 \cdot 10^{-4} \exp\left(-6.5 \left(\frac{p_{T,j}}{60.4 \text{ GeV}} - 1\right)^2\right) \; , & \text{(Pt < 65 GeV)} \\ 0.88 \cdot 10^{-4} \left[\exp\left(-\frac{p_{T,j}}{943 \text{ GeV}}\right) + \frac{248 \text{ GeV}}{p_{T,j}}\right] \; \text{(Pt > 65 GeV)} \end{cases}$$

ATL-PHYS-PUB-2016-026.pdf

$$\sigma_{dis} \equiv \sqrt{-2 \ln \left(\frac{L(B|Sig+B)}{L(Sig+B|Sig+B)} \right)}$$
 with $L(x|n) = \frac{x^n}{n!} e^{-x}$

$$\sigma_{exc} \equiv \sqrt{-2 \ln \left(\frac{L(Sig + B|B)}{L(B|B)} \right)}.$$

- Nthad=1: eff(signal)=50%, eff(tt)=59%, eff(t)=30%, eff(W)=19%, eff(VV)=21%
- Ntlep=1: eff(signal)=43%, eff(tt)=22%, eff(t)=6.5%, eff(W)=7.2%, eff(VV)=11%

$t \bar{t} g g$ Channel

Figure 4. The p_T distributions of the first (top, left) and second (top, right) hardest reconstructed gluons, and the isolated lepton (bottom, left), in the $t\bar{t}gg$ channel for $m_T=1.0$ TeV. The scalar sum of the transverse momenta of reconstructed hadronic and leptonic tops, and two gluons is shown in the bottom-right panel.

$t \bar{t} g g$ Channel

Figure 5. The distributions of reconstructed top partner invariant masses $m_{T_h}^{reco}$ and $m_{T_\ell}^{reco}$ in the $t\bar{t}gg$ channel for $m_T = 1.0$ TeV, after resolving the combinatorial problem based on the mass asymmetry in Eq.(4.19).

$t \bar{t} g \gamma$ Channel

Figure 8. The p_T distributions of the isolated photon (top, left), the hardest reconstructed gluon (top, right), and the isolated lepton (bottom, left), in the $t\bar{t}g\gamma$ channel for $m_T=1.0$ TeV. The scalar sum of the transverse momenta of reconstructed hadronic and leptonic tops, the isolated photon, and the hardest gluon is shown in the bottom-right panel.

$t \bar{t} g \gamma$ Channel

Figure 6. The reconstructed invariant mass distribution of the top-tagged fat jet (left) and the corresponding p_T distribution (right) in the $t\bar{t}g\gamma$ channel for $m_T = 1.0$ TeV.

Figure 7. The distributions of reconstructed top partner invariant masses $m_{T_1}^{reco}$ and $m_{T_2}^{reco}$ in the $t\bar{t}g\gamma$ channel for $m_T = 1.0$ TeV, after resolving the combinatorial problem based on the mass asymmetry in Eq.(4.19).

m_T	Cuts		$\sigma^{ m BG}$		
(TeV)			(fb)	σ_{dis}	σ_{excl}
	BC & t-tagging	0.5999	239.97	2.1202	2.1193
1.0	$p_T^{\{g_1,g_2\}} > \{250,150\} \text{ GeV } \& H_T > 1600 \text{ GeV } \& M_{t^{\text{had}}} > 145 \text{ GeV}$	0.2932	9.9995	5.0545	5.0302
	$750 < M_{T'} < 1100 \text{ GeV}$	0.1638	1.7214	6.7346	6.6333
	BC & t-tagging	0.1912	239.97	0.6759	0.6758
1.2	$p_T^{\{g_1,g_2\}} > \{250,150\} \text{ GeV & } H_T > 1700 \text{ GeV & } M_{t^{\text{had}}} > 145 \text{ GeV}$	0.1207	8.3195	2.2860	2.2806
	$950 < M_{T'} < 1300 \text{ GeV}$	0.0546	0.960	3.022	2.9945
	BC & t-tagging	0.0644	239.97	0.2277	0.2277
1.4	$p_T^{\{g_1,g_2\}} > \{250,150\} \text{ GeV \& } H_T > 1850 \text{ GeV \& } M_{t^{\text{had}}} > 145 \text{ GeV}$	0.0457	6.2833	0.9980	0.9968
	$1050 < M_{T'} < 1500 \text{ GeV}$	0.0214	0.9523	1.1969	1.1925
	BC & t-tagging	0.0227	239.97	0.0804	0.0804
1.6	$p_T^{\{g_1,g_2\}} > \{400,200\} \text{ GeV } \& H_T > 2100 \text{ GeV } \& M_{t^{\text{had}}} > 145 \text{ GeV}$	0.0144	2.3249	0.5168	0.5162
	$1100 < M_{T'} < 1800 \text{ GeV}$	9.26e-3	0.7409	0.5883	0.5871
	BC & t-tagging	8.093e-3	239.97	0.0286	0.0286
1.8	$p_T^{\{g_1,g_2\}} > \{500,200\} \text{ GeV & } H_T > 2350 \text{ GeV & } M_{t^{\text{had}}} > 145 \text{ GeV}$	5.12e-3	1.3104	0.2449	0.2448
	$1150 < M_{T'} < 2100 \text{ GeV}$	3.59e-3	0.5326	0.2683	0.2680
2.0	BC & t-tagging	2.94e-3	239.97	0.010e	0.0104
	$p_T^{\{g_1,g_2\}} > \{500,200\} \text{ GeV & } H_T > 2500 \text{ GeV & } M_{t^{\text{had}}} > 145 \text{ GeV}$	1.95e-3	0.9403	0.1104	0.1103
	$1150 < M_{T'} < 2500 \text{ GeV}$	1.53e-3	0.4521	0.1252	0.1251

Table 6. Cumulative cut-flow in the ttgg channel for both signal (spin- $\frac{1}{2}$ top partner) and backgrounds. The significance and the exclusion are calculated for a luminosity of 3000 fb⁻¹. The case with spin- $\frac{3}{2}$ top partner is similar.

m_T	Cuts		$\sigma^{ m BG}$		σ_{excl}
(TeV)			(fb)	σ_{dis}	
	BC & t-tagging	0.0295	0.1364	4.2294	4.0937
1.0	$p_T^{\{\gamma,g\}} > \{300, 140\} \text{ GeV } \& H_T > 1600 \text{ GeV } \& M_{t^{\text{had}}} > 145 \text{ GeV}$	0.0196	0.0365	7.5814	6.8712
	$900 < M_{T'}^{\gamma} < 1100 \ {\rm GeV} \ 700 < M_{T'}^g < 1100 \ {\rm GeV}$	0.0147	6.02e-3	8.0807	6.5927
	BC & t-tagging	0.0115	0.1364	1.6779	1.6555
1.2	$p_T^{\{\gamma,g\}} > \{300,150\} \text{ GeV \& } H_T > 2000 \text{ GeV \& } M_{t^{\text{had}}} > 145 \text{ GeV}$	6.67e-3	0.0189	4.1985	3.8795
	$1100 < M_{T'}^{\gamma} < 1300 \ \mathrm{GeV} \ 850 < M_{T'}^{g} < 1300 \ \mathrm{GeV}$	4.72e-3	2.34e-3	4.2913	3.5768
	BC & t-tagging	4.204e-3	0.1364	0.6204	0.6173
1.4	$p_T^{\{\gamma,g\}} > \{300, 150\} \text{ GeV } \& H_T > 2200 \text{ GeV } \& M_{t^{\text{had}}} > 145 \text{ GeV}$	2.70e-3	0.0134	1.2376	1.2004
	$1250 < M_{T'}^{\gamma} < 1500 \text{ GeV } 1000 < M_{T'}^{g} < 1550 \text{ GeV}$	1.9185e-3	1.7438e-3	2.1896	1.9358
	BC & t-tagging	1.515e-3	0.1364	0.2243	0.2239
1.6	$p_T^{\{\gamma,g\}} > \{300,200\} \text{ GeV \& } H_T > 2300 \text{ GeV \& } M_{t^{\text{had}}} > 145 \text{ GeV}$	1.0428e-3	0.0103	0.5534	0.5446
	$1400 < M_{T'}^{\gamma} < 1700 \text{ GeV } 1000 < M_{T'}^{g} < 1700 \text{ GeV}$	7.7161e-4	1.646e-3	0.9730	0.9127
	BC & t-tagging	5.65e-4	0.1364	0.0837	0.0837
1.8	$p_T^{\{\gamma,g\}} > \{300, 200\} \text{ GeV } \& H_T > 2600 \text{ GeV } \& M_{t^{\text{had}}} > 145 \text{ GeV}$	3.83e-4	5.47e-3	0.4113	0.4046
	$1700 < M_{T'}^{\gamma} < 1900 \text{ GeV } 1100 < M_{T'}^{g} < 2000 \text{ GeV}$	2.36e-4	4.15e-4	0.5865	0.5441
	BC & t-tagging	2.07e-4	0.1364	0.0308	0.0308
2.0	$p_T^{\{\gamma,g\}} > \{300, 150\} \text{ GeV } \& H_T > 2700 \text{ GeV } \& M_{t^{\text{had}}} > 145 \text{ GeV}$	1.54e-4	4.81e-3	0.1210	0.1203
	$1800 < M_{T'}^{\gamma} < 2100 \ {\rm GeV} \ \& \ 1300 < M_{T'}^{g} < 2100 \ {\rm GeV}$	9.51e-5	2.90e-4	0.2911	0.2777

Table 7. The same as Table 6 but for the $ttg\gamma$ channel.