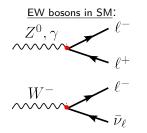
Lepton Flavor Universality tests in $\mathbf{b} \rightarrow \mathbf{s}\ell^+\ell^-$ decays at LHCb

Biplab Dey

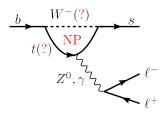

on behalf of the LHCb collaboration

ICHEP 2018, Seoul

LFU tests in $b
ightarrow {\it s} \ell^+ \ell^-$ at LHCb

LEPTON FLAVOR UNIVERSALITY (LFU)

 $\underbrace{ \begin{array}{c} \text{Charged Higgs in NP:} \\ H^{-} \\ \overline{\nu_{\tau}} \end{array}}_{\overline{\nu}_{\tau}}$

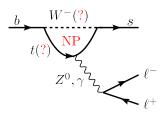

- Fundamental feature of EW theory in the SM: gauge couplings universal between ℓ ∈ {e, μ, τ}
- Difference in dynamics driven solely by the difference in the masses $(m_e < m_\mu \ll m_\tau)$.
- Even if NP occurs, *minimal flavor violation*: SM-like hierarchy in couplings
- Eg., H^+ couples to the 3rd generation heavy τ [see LFU with τ 's by O. Leroy at 3:20pm today]

• LFU violations between e and μ really unexpected and require non-SM-like NP couplings.

LFU tests in $b
ightarrow s \ell^+ \ell^-$ at LHCb

$b ightarrow s \ell^+ \ell^-$ as a sensitive LFU probe at LHCB

 Electroweak penguins: sensitive to very high mass particles propagating inside the loop

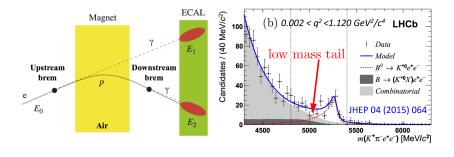


$$R_{\mathcal{K}^{(*)}} = \frac{\mathcal{B}(B \to \mathcal{K}^{(*)}\mu^{-}\mu^{+})}{\mathcal{B}(B \to \mathcal{K}^{(*)}e^{-}e^{+})}$$

- $R_X = 1 \pm \mathcal{O}(10^{-3})$ in SM up to small e- μ mass difference. $\mathcal{O}(10^{-2})$ QED corrections. [EPJC 76 (2016) 8, 440]
- Unlike τ's, no new form-factor. Hadronic uncertainties cancel in ratio. Very clean from QCD perspective. But...

$b ightarrow s \ell^+ \ell^-$ as a sensitive LFU probe at LHCB

• Electroweak penguins: sensitive to very high mass particles propagating inside the loop


$$R_{\mathcal{K}^{(*)}} = \frac{\mathcal{B}(B \to \mathcal{K}^{(*)}\mu^{-}\mu^{+})}{\mathcal{B}(B \to \mathcal{K}^{(*)}e^{-}e^{+})}$$

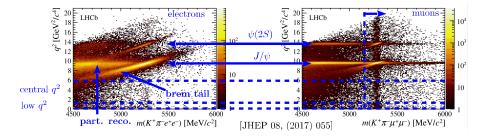
- $R_{K^{(*)}} = 1 \pm \mathcal{O}(10^{-3})$ in SM upto small $e_{-\mu}$ mass difference. $\mathcal{O}(10^{-2})$ QED corrections. [EPJC 76 (2016) 8, 440]
- Unlike τ's, no new form-factor. Hadronic uncertainties cancel in ratio. Very clean from QCD perspective. But...

• Electrons are hard at LHCb. Trigger, bremsstrahlung recovery...

LEPTON RECONSTRUCTION AT LHCB: ELECTRONS

- Large "shashlik" based ECAL: L0 trigger, γ/π^0 separation, electron reconstruction, radiative *B*-decays [see $b \rightarrow s\gamma$ by F. Ramikov earlier today]
- Energy resolution: $\frac{\sigma_E}{E} \sim 1\% \otimes \frac{10\%}{\sqrt{E}}$
- Large bremsstrahlung losses from material interaction. Not 100% recoverable. Low mass tail for the signal *B*; poorer resolution.

ELECTRON MODES: TRIGGER CATEGORIES


• Triggering on $B o K^{(*)} e^+ e^-$ more complicated than $B o K^{(*)} \mu^+ \mu^-$

- L0 triggers: higher E_T thresholds in the ECAL due to higher occupancies, than for muons (much softer p_T requirements).
 - LOE: any of the electrons with $E_T > 2.5$ GeV
 - LOH: any of π/K with $E_T > 3.5$ GeV
 - LOI: fired by other tracks in the pp collision event, independent of signal
- Studies performed on each exclusive trigger categories (different resolutions and purities)

 $B^0 \to K^* \ell^+ \ell^-$: part-reco backgrounds

• Analysis in two $q^2 \equiv m(\ell^+\ell^-)^2$ bins:

- low q^2 : [0.045, 1.1] GeV², close to the photon pole and $C_{7\gamma}$
- central q^2 : [1.1,6] GeV², feed-down from $J\!/\psi$ radiative tail

• $m(K^+\pi^-\mu^+\mu^-) > 5150$ MeV: selection for muons remove partially reconstructed backgrounds from $B \to K^* X \ell^+ \ell^-$

LFU tests in $b
ightarrow {\it s} \ell^+ \ell^-$ at LHCb

DOUBLE RATIOS AND YIELDS: R_{K^*}

• Measure double ratios using $J/\psi \to \ell^+ \ell^-$ as the control modes:

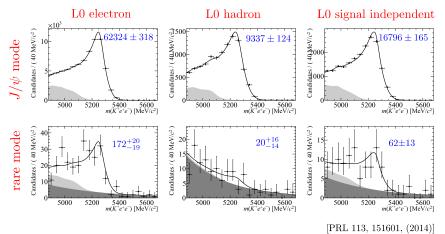
$$R_{\mathcal{K}(*)} = \frac{\mathcal{B}(B \to \mathcal{K}^{(*)}\mu^{-}\mu^{+})/\mathcal{B}(B \to \mathcal{K}^{(*)}J/\psi)}{\mathcal{B}(B \to \mathcal{K}^{(*)}e^{-}e^{+})/\mathcal{B}(B \to \mathcal{K}^{(*)}J/\psi)}$$

$$JHEP \ 08 \ (2017) \ 055$$

$$B^{0} \to \mathcal{K}^{0}\mu\mu$$

Biplab Dey

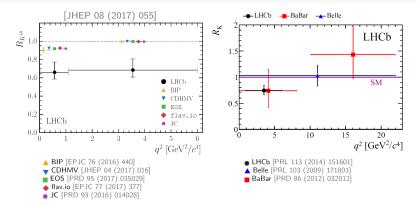
Low q² : 89 ± 11


LFU tests in $b
ightarrow {\it s} \ell^+ \ell^-$ at LHCb

Central q² : 111 ± 14

J/ψ region : 58K

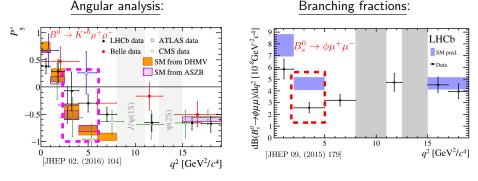
YIELDS FOR R_K


• Yields for $B^+ \to K^+ e^+ e^-$ broken down in to the three trigger categories, $q^2 \in [1, 6]$ GeV²:

• Yield for $B^+ \rightarrow K^+ \mu^+ \mu^- = 1226 \pm 40$

LHCb results

LHCB RUN 1 STATUS FOR R_{K^*} and R_K

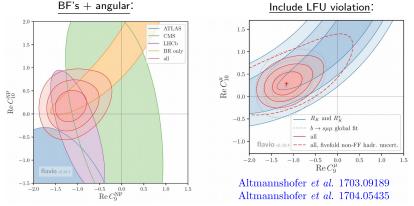


• Tension with SM, depending on theory model:

•
$$R_{K^*}(0.045 < q^2 < 1.1 \text{ GeV}^2) = 0.66^{+0.11}_{-0.07} \pm 0.03$$
: $2.1 - 2.3\sigma$
• $R_{K^*}(1.1 < q^2 < 6.0 \text{ GeV}^2) = 0.69^{+0.11}_{-0.07} \pm 0.05$: $2.4 - 2.5\sigma$
• $R_K(1 < q^2 < 6.0 \text{ GeV}^2) = 0.745^{+0.090}_{-0.074} \pm 0.036$: 2.6σ

Other Run 1 tensions in $b \to s \ell^+ \ell^-$

• Several other tensions in the muonic sector $(b o s \mu^+ \mu^-)$ [see talk by T. Blake at 2pm today]

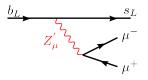

- 2.8 σ and 3.0 σ local deviations in P'_5 BF's in several $b \to s\mu^+\mu^$ modes 1-3 σ lower than SM.
 - Note: lower BF's in muonic modes is what drives the R_X tensions.

Biplab Dey

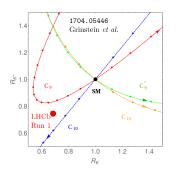
LFU tests in $b \to s \ell^+ \ell^-$ at LHCb

GLOBAL FITS FOR WILSON COEFFICIENTS

• Many different global fits incorporating different $b \rightarrow s\ell^+\ell^-$, $b \rightarrow s\gamma$ measurements.



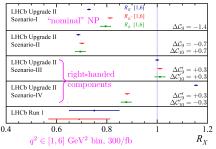
Biplab Dey


• Remarkable consistency: BF, angular, $R_{\kappa^{(*)}}$ all point to $\Delta C_{q}^{\mu} \sim -1$. LFU tests in $b \rightarrow s \ell^+ \ell^-$ at LHCb

More on global fits...

• $\Delta C_{9\mu} = C_{9\mu}^{NP} < 0$ from a tree-level Z'_{μ} would explain the anomalies [Altmannshofer'14, Crivellin'15,...]

• However, $c\bar{c}$ charm-loops can mimic $\Delta C_{9\mu}$.


- LFU tests do not suffer from charm-loops.
- Complementarity between R_K and R_{K^*}
- (Un)natural parity difference between K^+ and K^* gives different sensitivities to C_{9A} and C_{10V} .

RUN II AND UPGRADE SCENARIOS FOR R_X

- Run II $R_{K^{(*)}}$ updates, new R_{ϕ} , $R_{K\pi\pi}$ and R_{pK} in the pipeline.
- Sub-percent $R_{K^{(*)}}$ precision after Upgrade II in HL-LHC era.

		$\operatorname{Run} 2$	Run 3	Upgrade II
Yield	Run 1 result	$8 {\rm fb}^{-1}$	$23 {\rm fb}^{-1}$	300fb^{-1}
$B^+ \rightarrow K^+ e^+ e^-$	254 ± 29	970	3300	46000
$B^0 \rightarrow K^{*0} e^+ e^-$	111 ± 14	430	1400	20000
$B_s^0 \rightarrow \phi e^+ e^-$	-	80	260	3700
$\Lambda_b^0 \rightarrow pKe^+e^-$	-	210	700	9800
$B^+ \rightarrow \pi^+ e^+ e^-$	-	20	75	1000
R_X precision	Run 1 result	$8 {\rm fb}^{-1}$	$23 {\rm fb}^{-1}$	$300 {\rm fb}^{-1}$
R_K	$0.745 \pm 0.090 \pm 0.036$	0.046	0.025	0.007
$R_{K^{*0}}$	$0.69 \pm 0.11 \pm 0.05$	0.070	0.038	0.010
R_{ϕ}	-	0.163	0.089	0.024
R_{pK}	-	0.100	0.054	0.014
R_{π}	-	0.304	0.165	0.044
-				

• Allows to distinguish between different NP models.

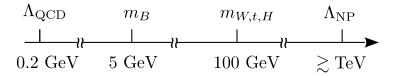
- Projections don't include improved ECAL for Upgrade II: higher granularity, fast-timing to reduce combinatorics.
- L0 hardware trigger replaced by flexible software trigger from Run III

Biplab Dey

Outlook

The Case for Future Hadron Colliders From $B \rightarrow K^{(*)}\mu^+\mu^-$ Decays

B.C. Allanach,^a Ben Gripaios,^b Tevong You 1a,b


^aDAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom ^bCavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, United Kinadom

• If these flavor anomalies survive LHCb Run III and Belle II, strong motivation for a 100 TeV FCC-hh.

Backup slides

NP HUNTING STRATEGY IN b-physics

• Multi-scale problem: QCD, hadronic form-factors, Electroweak, NP.

 Effective Field Theory: separate long and short distance scales. SM + a basis of dim-6 local operators, O_i and Wilson coefficients C_i

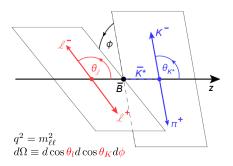
$$\begin{array}{ll} \hline \text{Wilson coefficients encode short-distance physics} \\ \hline \text{after integrating over high mass SM particles} \end{array} \\ \hline \mathcal{H}^{SM}_{\mathrm{eff}(6)} = -\frac{4G_FV}{\sqrt{2}} \sum_i C_i^{SM} \mathcal{O}_i \\ \hline i \\ \hline \end{array} \\ \hline \begin{array}{l} \mathcal{H}^{NP}_{\mathrm{eff}(6)} = \sum_i \frac{C_i^{NP}}{\Lambda_{\mathrm{NP}}^2} \mathcal{O}_i, \ \Delta F = 1 \\ \hline \end{array} \\ \hline \end{array}$$

• Sensitive to $\Lambda_{\rm NP} \gtrsim {\rm TeV}$ scale thru' C_i . Need precision measurements.

LFU tests in $b \rightarrow s \ell^+ \ell^-$ at LHCb

Operators for $b \to s \ell^+ \ell^-$

 $b \xrightarrow{\mathcal{O}_i} s, c, u$ Four-fermion operators for charged and neutral currents $\bar{\nu}_L, \ell^+$


• Coupling is
$$V \sim rac{lpha}{4\pi} V_{ts}^* V_{tb}$$
; $\Lambda_{
m NP} \sim$ 10-100 TeV

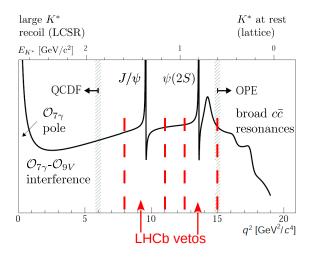
• Main operators for
$$b o s \ell^+ \ell^-$$
 are $\mathcal{O}_{7,9,10}^{(\prime)}$

• Right-handed (primed) ones suppressed by factors of m_s/m_b in the SM.

$$\mathcal{O}_{7\gamma}^{(\prime)} = \frac{m_b}{e} (\bar{s}\sigma^{\mu\nu} P_{R(L)}b) F_{\mu\nu}$$
$$\mathcal{O}_{9V}^{(\prime)} = (\bar{s}\gamma_\mu P_{L(R)}b) (\bar{\ell}\gamma^\mu \ell)$$
$$\mathcal{O}_{10A}^{(\prime)} = (\bar{s}\gamma_\mu P_{L(R)}b) (\bar{\ell}\gamma^\mu \gamma_5 \ell)$$

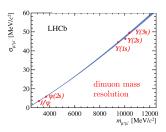
$B^0 ightarrow K^* \ell^+ \ell^-$ angular analysis

$$\frac{d\Gamma}{dq^2 d\Omega} = \frac{9}{32\pi} \sum_{i=1}^{17} J_i(q^2) f_i(\theta_I, \theta_K, \phi)$$

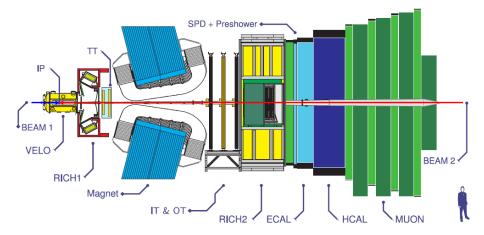

- J_i are bilinears of the transversity amplitudes $A_0^{L,R}$, $A_{\perp}^{L,R}$, $A_{\parallel}^{L,R}$, $A_{S}^{L,R}$
- Both short- and long-distance parts enter the amplitudes:

$$A_{\perp}^{L(R)} \sim \left\{ [(C_9^{\text{eff}} + C_9^{'\text{eff}}) \mp (C_{10}^{\text{eff}} + C_{10}^{'\text{eff}})] \frac{V(q^2)}{m_B + m_{K^*}} + \frac{2m_b}{q^2} (C_7^{\text{eff}} + C_7^{'\text{eff}}) T_1(q^2) \right\}$$

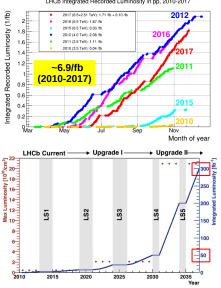
• Reduced FF uncertainties at LO: $P'_5 = \frac{J_5}{\sqrt{J_{1c}(1 - J_{1c})}}$, [1303.5794]


LFU tests in $b
ightarrow {\it s} \ell^+ \ell^-$ at LHCb

q^2 DEPENDENCE


LEPTON RECONSTRUCTION AT LHCB: MUONS

- Reminder: the LFU interest is only very recent: 2012 (BaBar R(D^(*)) and 2014 (LHCb R(K)).
- Design of LHCb primarily for muons and not electrons.



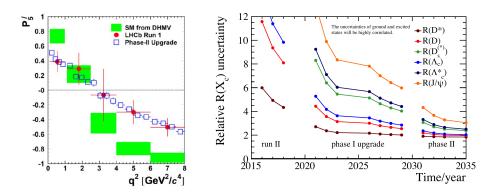
- Dedicated muon system for L0 hardware trigger. ε_{L0+HLT} ~ 90%, 1.3% π ↔ μ mis-ld.
- Low material interaction for muon tracks.
- Pair of di-muons among the best reconstructed tracks in LHCb. Excellent resolution.

THE LHCB DETECTOR COMPONENTS

THE PATH AHEAD FOR LHCB...

Biplab Dev

LHCb Integrated Recorded Luminosity in pp, 2010-2017


- Aim to collect > 2/fb in 2018.
- Many more R_X , asymmetry measurements. TD-CPV in $B_{\rm s} \rightarrow \phi \mu^+ \mu^-, B^0 \rightarrow K^0_{\rm s} \rho^0 \gamma, \dots$

- Major upgrade in LS2. Consolidation in LS3.
- 50/fb by 2030. Phase II upgrade for HL-LHC, aiming for 300/fb.

LFU tests in $b \to s \ell^+ \ell^-$ at LHCb

July 5th, 2018 14 / 14

More on Upgrade II reach

