

Flight distance

muoh

muon

Dion

THE UNIVERSITY OF WARWICK

Electroweak Penguin Decays at LHCb T. Blake for the LHCb collaboration

IP 🕽

ICHEP 2018, Seoul

Outline

- Branching fraction and angular distribution of $b \rightarrow s \mu^+ \mu^-$ processes:
 - Angular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$ (based on 3 fb⁻¹).
 - Angular analysis of $\Lambda_b \to \Lambda \mu^+ \mu^-$ (based on 5 fb⁻¹)
- Branching fraction of $b \rightarrow d\mu^+\mu^-$ processes:
 - Evidence for $B_s \to \overline{K}^{*0} \mu^+ \mu^-$ (based on 4.6 fb⁻¹)

More information can be found at

http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_RD.html

Electroweak penguin decays

• Flavour changing neutral current transitions that only occur at loop order (and beyond) in the SM.

SM diagrams involve the charged current interaction.

• New particles can also contribute:

enhancing/suppressing decay rates, introducing new sources of *CP* violation or modifying the angular distribution of the final-state particles.

Expected $d\Gamma/dq^2$ spectrum

Branching fraction measurements

• We already have precise measurements of branching fractions from the Run1 data, with at least comparable precision to SM expectations:

SM predictions have large theoretical uncertainties from hadronic form factors (3 for B→K and 7 for B→K* decays). For details see [Bobeth et al JHEP 01 (2012) 107] [Bouchard et al. PRL111 (2013) 162002] [Altmannshofer & Straub, EPJC (2015) 75 382].

Branching fraction measurements

T. Blake

Angular observables

- Multibody final-states:
 - Angular distribution provides many observables that are sensitive to BSM physics.
 - Constraints are orthogonal to branching fraction measurements, both in their impact in global fits and in terms of experimental uncertainties.
- eg $B \to K^{*0} \mu^+ \mu^-$ decay described by three angles and q^2 .

(a) θ_K and θ_ℓ definitions for the B^0 decay

(c) ϕ definition for the \overline{B}^0 decay

$$B^0 \rightarrow K^{*0} \mu^+ \mu^-$$
 angular distribution

Complex angular distribution:

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\vec{\Omega}}\Big|_{\mathrm{P}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K + F_{\mathrm{L}} \cos^2 \theta_K + F_{\mathrm{L}}$$

The observables depend on form-factors for the $B \rightarrow K^*$ transition plus the underlying short distance physics (Wilson coefficients).

Experiments can reduce the complexity by folding the angular distribution, see [LHCb, PRL 111 (2013) 191801]

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular observables

- Overlaying results for $F_{\rm L}$ and $A_{\rm FB}$ from LHCb [JHEP 02 (2016) 104], CMS [PLB 753 (2016) 424] and ATLAS [ATLAS-CONF-2017-023].
- SM predictions based on
 [Altmannshofer & Straub, EPJC 75 (2015) 382]
 [LCSR form-factors from Bharucha, Straub & Zwicky, JHEP 08 (2016) 98]
 Joint fit
 [Lattice form-factors from Horgan, Liu, Meinel & Wingate arXiv:1501.00367]

Form-factor "free" observables

- - One is associated with A₀ and the other A_∥ and A_⊥.
- Can then construct ratios of observables which are independent of these soft formfactors at leading order, e.g.

$$P_5' = S_5 / \sqrt{F_{\rm L}(1 - F_{\rm L})}$$

• P'₅ is one of a set of so-called form-factor free observables that can be measured [Descotes-Genon et al. JHEP 1204 (2012) 104].

Effective theory

• Can write a Hamiltonian for an effective theory of $b \rightarrow s$ processes:

Global fits

• Several attempts to interpret our results through global fits to $b \rightarrow s$ data.

Data are consistent between experiments/measurements and favour a modified vector coupling ($C_{9^{NP}} \neq 0$) at 4-5 σ .

$\Lambda_b \rightarrow \Lambda \mu^+ \mu^- \text{ decay}$

- First observed by the CDF collaboration in [PRL 107 (2011) 201802]
- Decay has unique phenomenology:
 - Diquark pair as a spectator rather than single quark;
 - → Λ_b can be produced polarised in pp collisions;
 - ➡ and the A baryon decays via the weak interaction.
- Based on [JHEP 06 (2015) 115], expect signal predominantly at low hadronic-recoil (15<q²<20 GeV²/c⁴).

Figure and SM prediction from: [Detmold et al. Phys.Rev. D93 (2016) 074501]

Data from: [LHCb, JHEP 06 (2015) 115]

$\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ angular distribution

- If the Λ_b is produced polarised the decay is described by 5 angles and normal-vector, \hat{n} .
- Large number of observables:

$$\frac{\mathrm{d}^5\Gamma}{\mathrm{d}\vec{\Omega}} = \frac{3}{32\pi^2} \sum_i^{34} K_i(q^2) f_i(\vec{\Omega})$$

where K_{11} — K_{34} are zero if the Λ_b is unpolarised. [Blake et al. JHEP 11 (2017) 138]

- Determine observables using the *method of moments* and a set of orthogonal weighing functions.
- Correct for angular efficiency using per-candidate weights determined on simulated phasespace events.
- Analysis cross-checked using $B^0 \to J/\psi K_S$ and $\Lambda_b \to J/\psi \Lambda$ decays selected in same way as the signal.

$\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ angular distribution

• Large asymmetries on both the lepton- and hadron-side:

$$\begin{aligned} A_{\rm FB}^{\ell} &= -0.39 \pm 0.04 \, ({\rm stat}) \, \pm 0.01 \, ({\rm syst}) & {\rm Preliminary} & {\rm Cor} \\ A_{\rm FB}^{h} &= -0.30 \pm 0.05 \, ({\rm stat}) \, \pm 0.02 \, ({\rm syst}) & {\rm Preliminary} & {\rm SM} \\ A_{\rm FB}^{\ell h} &= +0.25 \pm 0.04 \, ({\rm stat}) \, \pm 0.01 \, ({\rm syst}) & {\rm Preliminary} & (A_{\rm F}^{\ell}) \\ \end{aligned}$$

- Consistent with SM predictions [PRD 93 (2016) 074501] $(A_{\rm FB}^{\ell h} \text{ is } \sim 2\sigma \text{ from its}$ prediction)
- Hadron-side asymmetry due to the weak decay of the Λ baryon.

$b \rightarrow d\mu^+\mu^-$ transitions

- Decays are strongly suppressed in the SM, due to the small size of V_{td} , with branching fractions of $\mathcal{O}(10^{-8})$.
- We already have access to $b \rightarrow d\mu^+\mu^-$ processes in the Run 1 data set:

 Can use ratios of branching fractions between b→dµ+µ- and b→sµ+µprocesses to determine |V_{td}/V_{ts}|, e.g.

 $\frac{\mathcal{B}(B^+ \to \pi^+ \,\mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)} \implies \frac{|V_{td}/V_{ts}| = 0.20 \pm 0.02}{\text{[Du et al. PRD 93 (2016)034005]}}$

 $\mu^+\mu^-$

- Could be used in conjunction with $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ to determine $|V_{td}/V_{ts}|$.
- Need good mass resolution to separate the Bs and B⁰→K^{*0}µ⁺µ⁻ decays.
- Perform a search for the decay using a data set corresponding to 4.6fb⁻¹ (3fb⁻¹ + 1.6fb⁻¹).

$B_s \rightarrow \overline{K}^{*0} \mu^+ \mu^-$ branching fraction

- Analysis binned in 4 bins of NN response.
- Signal yield determined from a simultaneous fit to the NN response bins.
- Normalise signal using $B^0 \rightarrow J/\psi K^{*0}$ and f_s/f_d from [LHCb-CONF-2013-011].

- Find first evidence for the decay with a significance of 3.4σ .
- Resulting branching is:

 $\mathcal{B}(B_s \to \bar{K}^{*0} \mu^+ \mu^-) = [2.9 \pm 1.0 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.3 \,(\text{norm})] \times 10^{-8}$

→ Consistent with SM predictions, see e.g. [EPJC 73 (2013) 2593, arXiv:1803.05876]

$B_s \rightarrow \overline{K}^{*0} \mu^+ \mu^-$ branching fraction

- Analysis binned in 4 bins of NN response.
- Signal yield determined from a simultaneous fit to the NN response bins.
- Normalise signal using $B^0 \rightarrow J/\psi K^{*0}$ and f_s/f_d from [LHCb-CONF-2013-011]

- Find first evidence for the decay with a significance of 3.4σ .
- Resulting branching is:

 $\mathcal{B}(B_s \to \bar{K}^{*0} \mu^+ \mu^-) = [2.9 \pm 1.0 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.3 \,(\text{norm})] \times 10^{-8}$

→ Consistent with SM predictions, see e.g. [EPJC 73 (2013) 2593, arXiv:1803.05876]

Summary

- FCNC processes provide powerful constraints on extensions of the SM.
- Large $b\bar{b}$ cross-section at the LHC provides large samples of "rare" decay processes.
- Several interesting tensions are seen in data on $b \rightarrow s\ell^+\ell^-$ processes.

Summary

 Huge progress expected in the next five years with new data from the LHC experiments and from Belle II.

LHCb Integrated Recorded Luminosity in pp, 2010-2018 2018 (6.5 TeV): 0.74 /fb Integrated Recorded Luminosity (1/fb) 2012 2017 (6.5+2.51 TeV): 1.71 /fb + 0.10 /fb 2 2016 (6.5 TeV): 1.67 /fb 2015 (6.5 TeV): 0.33 /fb 1.8 2016 201 2012 (4.0 TeV): 2.08 /fb 2011 (3.5 TeV): 1.11 /fb 1.6 2010 (3.5 TeV): 0.04 /fb 1.4 1.2 2011 0.8 0.6 2018 2015 0.4 0.2 2010 0 ⊞ Mar May Jul Sep Nov Month of year

[LHCb-PAPER-2018-004]

 $B_s \rightarrow J/\psi K^{*0}$

Operators

- Different processes are sensitive to different 4-fermion operators.
 - Can exploit this to over-constrain the system.

 $\mathcal{O}_{7} = (m_{b}/e) \left(\bar{s}\sigma^{\mu\nu}P_{R}bF_{\mu\nu}\right)$ $\mathcal{O}_{9} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell)$ $\mathcal{O}_{9} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$ $\mathcal{O}_{10} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$ $\mathcal{O}_{S} = (\bar{s}P_{R}b)(\bar{\ell}\ell)$ $\mathcal{O}_{P} = (\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell)$ $\mathcal{O}_{R} = (\bar{s}P_{R}b)(\bar{k}\gamma_{5}\ell)$ $\mathcal{O}_{R} = (\bar{s}P_{R}b)(\bar{k}\gamma_{5}\ell)$

e.g.
$$B_s^0 \to \mu^+ \mu^-$$
 constrains $C_{10} - C'_{10}, C_S - C'_S, C_P - C'_P$
 $B^+ \to K^+ \mu^+ \mu^-$ constrains $C_9 + C'_9, C_{10} + C'_{10}$
 $B^0 \to K^{*0} \mu^+ \mu^-$ constrains $C_7 \pm C'_7, C_9 \pm C'_9, C_{10} \pm C'_{10}$

The primes denote right-handed counterparts of the operators whose contribution is small in the SM.

Interpretation of global fits

Optimist's view point

Vector-like contribution could come from e.g. new tree level contribution from a Z' with a mass of a few TeV. Pessimist's view point

Vector-like contribution could point to a problem with our understanding of QCD, e.g. are we correctly estimating the contribution for charm loops that produce dimuon pairs via a virtual photon?

More work needed from experiment/theory to disentangle the two

What can we learn from the data?

• If we are underestimating $c\bar{c}$ contributions then naively expect to see the shift in C_9 get larger closer to the narrow charmonium resonances.

No clear evidence for a rise in the data (but more data is needed).

SM contributions

- Interested in new short distance contributions.
- We also get long-distance hadronic contributions.
- Need estimate

 of non-local
 hadronic matrix
 elements
 [Khodjamirian et al.
 JHEP 09 (2010) 089]

Theoretical Framework

• In leptonic decays the matrix element for the decay can be factorised into a leptonic current and *B* meson decay constant:

$$\langle \ell^+ \ell^- | j_\ell j_q | B_q \rangle = \langle \ell^+ \ell^- | j_\ell | 0 \rangle \langle 0 | j_q | B_q \rangle$$
$$\approx \langle \ell^+ \ell^- | j_q | 0 \rangle \cdot f_{B_q}$$

• In semileptonic decays, the matrix element can be factorised into a leptonic current times a form-factor:

$$\langle \ell^+ \ell^- M | j_\ell j_q | B \rangle = \langle \ell^+ \ell^- | j_\ell | 0 \rangle \langle M | j_q | B_q \rangle$$
$$\approx \langle \ell^+ \ell^- | j_\ell | 0 \rangle \cdot F(q^2) + \mathcal{O}(\Lambda_{\text{QCD}}/m_B)$$

however this factorisation is not exact (due to hadronic contributions).

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ reconstructed candidates

Can select a clean sample of signal events using multivariate classifier.

2398 ± 57 candidates in 0.1 < q^2 < 19 GeV² after removing the J/ψ and ψ (2S).

Systematic uncertainty on branching fraction measurements

- Normalise measurements to $B \rightarrow J/\psi X$ control channel.
 - Cancels luminosity/cross-section/efficiency scale uncertainties.
- Use $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ at LHCb as an example of what systematic uncertainties are important:

	Source	$F_{\rm S} _{644}^{1200}$	$\mathrm{d}\mathcal{B}/\mathrm{d}q^2 \times 10^{-7} (c^4/\mathrm{GeV}^2)$
	Data-simulation differences	0.008-0.013	0.004-0.021
Need to separate	Efficiency model	0.001-0.010	0.001 – 0.012
<i>K</i> *(892) ⁰ from other	S-wave $m_{K\pi}$ model	0.001 – 0.017	0.001 – 0.015
$K\pi$ contributions	$B^0 \to K^*(892)^0$ form factors	—	0.003 - 0.017
•	$\mathcal{B}(B^0 \to J/\psi (\to \mu^+ \mu^-) K^{*0})$		0.025 - 0.079
			1

Uncertainty on $\mathcal{B}(B \to J/\psi X)$ normalisation modes is already a limiting factor. Encourage Belle II to update these measurements!

Resonant contributions

- With the large LHC datasets can also explore the shape of the dΓ/dq² spectrum in detail.
- See evidence for broad charmonium states and light quark contributions.
- Can determine relative magnitude/phases of the different contributions.

 Data could be used to exclude models proposing new GeV-scale particles as an explanation for R_K/R_{K*}. [F. Sala & D. Straub, arXiv:1704.06188]

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular observables

- Overlaying results for F_L and A_{FB} from LHCb [JHEP 02 (2016) 104], CMS [PLB 753 (2016) 424] and BaBar [PRD 93 (2016) 052015] + measurements from CDF [PRL 108 (2012) 081807] and Belle [PRL 103 (2009) 171801].
- SM predictions based on
 [Altmannshofer & Straub, EPJC 75 (2015) 382]

 [LCSR form-factors from Bharucha, Straub & Zwicky, arXiv:1503.05534]
 Joint fit
 [Lattice form-factors from Horgan, Liu, Meinel & Wingate arXiv:1501.00367]

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis

- Typically integrate over all but one angle or perform angular folding to reduce the number of observables.
- LHCb has performed the first full angular analysis of the decay.
 - Access the full set of angular observables and their correlations.
- Experiments need good control of detector efficiencies and to understand background from decays where the Kπ is in an S-wave configuration.
- Use $B^0 \rightarrow J/\Psi K^{*0}$ as a control channel to understand the acceptance of the detector.

 $K^{*0}\mu^{+}\mu^{-}$ example fit

 $\rightarrow K^+\ell^+\ell^-$

• Angular distribution of $B^+ \rightarrow K^+ \ell^+ \ell^-$ is a null test of SM, but can be sensitive to new scalar/pseudoscalar/tensor contributions, e.g.

$B_s \rightarrow \phi \mu^+ \mu^-$ decay rate

 Large tension between the SM prediction and the data at low q² (~3σ).

SM predictions based on [Altmannshofer & Straub, arXiv:1411.3161] [LCSR form-factors from Bharucha, Straub & Zwicky, arXiv:1503.05534]

Rare leptonic decays

- B_(s,d)→µ⁺µ⁻ are golden modes to study at the LHC.
 - CKM suppressed, loop suppressed and helicity suppressed.
 - Powerful probe of models with new enhanced (pseudo)scalar interactions, e.g. SUSY at high tanβ.

$$\frac{\mathcal{B}(B_q \to \ell^+ \ell^-)_{\rm NP}}{\mathcal{B}(B_q \to \ell^+ \ell^-)_{\rm SM}} = \frac{1}{|C_{10}^{\rm SM}|^2} \left\{ \left(1 - 4\frac{m_\ell^2}{m_{B_q}} \right) \left| \frac{m_{B_q}}{2m_\ell} \left(C_S - C_S' \right) \right|^2 + \left| \frac{m_{B_q}}{2m_\ell} \left(C_P - C_P' \right) + \left(C_{10} - C_{10}' \right) \right|^2 \right\}$$

• Recent LHCb analysis using run 1 and 2 data (3fb⁻¹ +1.4fb⁻¹) provided the first single experiment observation of $B_s \rightarrow \mu^+ \mu^-$ at more than 7σ . [LHCb, PRL 118 (2017) 191801]

$B_{\rm S} \rightarrow \mu^+ \mu^-$

- Recent LHCb analysis using run 1 and 2 data ($3fb^{-1} + 1.4fb^{-1}$) provided the first single experiment observation of $B_s \rightarrow \mu^+ \mu^-$ at more than 7σ . [LHCb, PRL 118 (2017) 191801]
- Measurements are all consistent with the SM expectation.
 - → Can exclude large scalar contributions.

Effective lifetime

• The untagged time dependent decay rate is

$$\Gamma[B_s(t) \to \mu^+ \mu^-] + \Gamma[\bar{B}_s(t) \to \mu^+ \mu^-] \propto e^{-t/\tau_{B_s}} \left\{ \cosh\left(\frac{\Delta\Gamma_s}{2}t\right) + A_{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s}{2}t\right) \right\}$$

- A_{ΔΓ} provides additional separation between scalar and pesudoscalar contributions.
- In the SM $A_{\Delta\Gamma} = 1$ such that the system evolves with the lifetime of the heavy B_s mass eigenstate.

$B_{\rm s} \rightarrow \mu^+ \mu^-$ effective lifetime

• The $A_{\Delta\Gamma}$ parameter modifies the effective lifetime of the decay:

$$\tau_{\rm eff} = \frac{\tau_{B_s}}{1 - y_s^2} \left(\frac{1 + 2A_{\Delta\Gamma} y_s + y_s^2}{1 + A_{\Delta\Gamma} y_s} \right) \quad {\rm where} \ \ y_s = \tau_{B_s} \frac{\Delta\Gamma}{2}$$

• LHCb have performed a first measurement of $au_{\rm eff}$, giving

 $\tau[B_s^0 \to \mu^+ \mu^-] = 2.04 \pm 0.44 \pm 0.05 \,\mathrm{ps}$

NB Not yet sensitive to $A_{\Delta\Gamma}$ (the stat. uncertainty is larger than the change in the lifetime from $\Delta\Gamma_s$). This will become more interesting during runs 3 and 4.

s.d

- LHCb performs a search for $B_{(s,d)} \rightarrow \tau^+ \tau^$ decays using $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$.
 - ► Exploit the $\tau^- \rightarrow a_1(1260)^- \nu_{\tau}$ and $a_1(1260)^- \rightarrow \rho(770)^0 \pi^-$ decays to select signal/control regions of dipion mass.
- Fit Neural network response to discriminate signal from background.
 - Ditau mass is not a good discriminator due to missing neutrino energy.
- LHCb sets limits on: $\mathcal{B}(B_s^0 \to \tau^+ \tau^-) < 6.8 \times 10^{-3} \text{ (95\% CL)}$ $\mathcal{B}(B^0 \to \tau^+ \tau^-) < 2.1 \times 10^{-3} \text{ (95\% CL)}$

First limit on $B_s \rightarrow \tau^+ \tau^-$ and worlds best limit on $B^0 \rightarrow \tau^+ \tau^-$