

Mixing and Indirect CP Violation in Charm Decays at LHCb

Maurizio Martinelli (CERN) on behalf the LHCb Collaboration

ICHEP 2018 Seoul, 06.07.2018

Motivation

Indirect Searches

- Indirect searches probe New Physics scenarios at higher energies than those directly accessible at LHC
- Complementary studies to direct searches
 Scale depends on NP scenario
- Often anomalies in well-known processes led to discovery

Indirect CP Violation

Mixing and Decay Amplitudes

- $D_{1,2}$ mass eigenstates are superposition of D^0 and \overline{D}^0 flavour eigenstates
- The study of their oscillations in time provides insights into CPV in mixing
- ...and interference between mixing and decay amplitudes

$$|D_1\rangle = p|D^0\rangle - q|\overline{D}^0\rangle$$
$$|D_2\rangle = p|D^0\rangle + q|\overline{D}^0\rangle$$

Mixing

$$\left| \begin{array}{c|c} D^0 & \overline{D}^0 \\ \hline \end{array} \right|^2 \neq \left| \begin{array}{c|c} \overline{D}^0 & D^0 \\ \hline \end{array} \right|^2$$

Interference Mixing and Decay

Observables

$$x \equiv \frac{m_1 - m_2}{\Gamma}$$

4 σ

<u>5</u> σ

x (%)

Mixing established with $>11.5\sigma$

$$y \equiv \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$$

No CPV sign yet!

-0.4

DCS

Wrong Sign Ratio in $D^0 \rightarrow K^+\pi^-$ Decays

Charm Mixing Measurement

• Mixing parameters are measured separately to D^0 and \overline{D}^0 decays

• Any different oscillation pattern between D^0 and \overline{D}^0 decays

indicates CPV

$$R^{\pm}(t) = \frac{N_{WS}^{\pm}(t)}{N_{RS}^{\pm}(t)} \approx R_D^{\pm} + \sqrt{1}$$

 $\frac{\textit{decay}}{\approx R_D^{\pm}} + \sqrt{R_D^{\pm}} y'^{\pm} \frac{t}{\tau} +$

mix

- 2011-2016: 5/fb
- $D^{*+} \rightarrow D^0 \pi^+$
- Cut on D⁰ mass, fit Δm
- Measure ratio in intervals of decay time up to 20τ_{D0}

Wrong Sign Ratio in $D^0 \rightarrow K^+\pi^-$ Decays - Results

Challenges

- Contamination from D⁰ decays from B
 Bias D⁰ lifetime towards higher values
- Instrumental asymmetries ∈(K-π+)/∈(K+π-)

Results

No measurable CPV observed

Improved determination of mixing parameter by a factor 2

$$x'^2 = (3.9\pm2.7)x10^{-5}$$

 $y' = (5.28\pm0.52)x10^{-3}$

PHYS. REV. D 97, 031101 (2018)

A_{Γ} with $D^0 \rightarrow hh$ decays

CP Violation in Time-Dependent Rate

• Decay to same CP eigenstate CPV leads to different time-dependent rate between D 0 and $\overline{D}{}^0$

$$A_{\Gamma} \equiv \frac{\hat{\Gamma}(D^0 \to f) - \hat{\Gamma}(\overline{D}^0 \to f)}{\hat{\Gamma}(D^0 \to f) + \hat{\Gamma}(\overline{D}^0 \to f)} \approx \frac{1}{2} \left[\left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi_f - \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi_f \right]$$

$$CPV \ \textit{mixing}$$

$$CPV \ \textit{mixing}$$

$$CPV \ \textit{mixing} \ \textit{CPV mixing/decay}$$

Dataset

- Run1 (2011-2012): 3/fb
- $D^{*+} \rightarrow D^{0}\pi^{+}$
- Cut on D⁰ mass, study Δm
- Combinatorial background sideband-subtracted
- Measured asymmetry in intervals of decay time [0.6,20]τ_{D0}

A_I with $D^0 \rightarrow hh$ decays - Challenges

Instrumental Asymmetries

- Soft pion charge reconstruction asymmetry
 Time dependent correction due to correlation between soft
 pion kinematics and D⁰ decay time
- Reweighed the soft pion kinematic to recover left-right asymmetry of the detector
 Validated on D⁰→K-π+ decays

D⁰ from B decays (Secondaries)

- Undetected B decays mimic a larger D⁰ decay time
 Dilutes the asymmetry
- Applied requirement of the D⁰ pointing to PV
 Residual background from B decays estimated with a
 model calibrated by the yield of secondaries at higher
 decay time

A_{Γ} with D^0 \rightarrow hh decays - Results

No CPV

Compatible to CP conservation up to 3x10-4 sensitivity

$$A_{\Gamma}(KK) = (-3.0\pm3.2\pm1.0)x10^{-4}$$

 $A_{\Gamma}(\pi\pi) = (4.6\pm5.8\pm1.2)x10^{-4}$

- A complementary measurement yields compatible results
 Based on data-driven per-event acceptance calculation
- Combination with statistically independent muon-tagged sample (B→D⁰µ-X)

$$A_{\Gamma} = (-2.9 \pm 2.8) \times 10^{-4}$$

$D^0 \rightarrow K^0 s \pi^+ \pi^-$ - The Golden Mode

Direct Access to Mixing and CP Parameters

- Allows to measure directly x, y, |q/p|, Φ
- Presence of multiple interfering amplitudes enhances sensitivity to mixing
- Coexistence of CF and DCS suppressed amplitudes in a CP eigenstate

Challenges

Need a model to describe resonances

LHCb: JHEP 04 (2016) 033 Belle: PRD 89 (2014) 091103

Babar: PRL 105 (2010) 081803

Semi-Unbinned

- To avoid the complication of performing a time-dependent amplitude analysis, we applied a semi-unbinned approach
- The phase-space is split in regions with slow variation of the strong phase following BaBar's 2008 model
- In each of these the D⁰ decay time distribution is studied

$$\mathcal{P}_{D^0}^k \propto e^{-\Gamma t} \left[T_k - \sqrt{T_k T_{-k} (y c_k - x s_k) \Gamma t} \right]$$

$$T_k = \int_k |\mathcal{A}_{D^0}|^2 d\mathcal{D}$$

$$c_k - i s_k = \frac{1}{\sqrt{T_k T_{-k}}} \int_k \mathcal{A}_{D^0}^* \mathcal{A}_{\bar{D}^0} d\mathcal{D}$$

- T_k , c_k and s_k are hadronic parameters constrained from CLEO [PRD82(2010) 112006]
- First model-independent measurement of x and y with 2011 data (1/fb, N=178k)

$$x=(0.86\pm0.53\pm0.17)\%$$
 $y=(0.03\pm0.46\pm0.13)\%$

Compatible, but not yet competitive with B factories Their precision is ~0.2%

Interplay Between LHCb and BESIII

https://indico.ihep.ac.cn/event/7249/

Multibody Decays

- Especially in multi body decays, a synergy between LHCb and BESIII could be very advantageous
- BESIII could measure with good precision the variation of the strong phases in the Dalitz plot
- LHCb could use those phases as inputs to perform binned analysis of our data
- Precision is slightly degraded, but avoids the need of performing extremely complex timedependent Dalitz plot analyses at LHCb
- Notable examples are $D^0 \rightarrow K^0 s \pi^+ \pi^-$ and $D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$

LHCb Run2 and Beyond

What to Expect?

- We have already started analysing Run2 data and already produced an update for the WS mixing analysis
- More analysis are in the pipeline, as we are approaching the 10⁻⁴ precision on CP observables (A_{Γ})

φ

Upgrade (2020-2023)

Will provide a factor 3 larger dataset, very similar to current experiment Analyses strategies should follow what's done in LHCb

Upgrade II (2025-)

- A LHCb experiment for HL-LHC to collect 300/fb
- Ambitious but extremely rewarding

Conclusions

Mixing

We have the potential to measure x with Run2 data in $D^0 \rightarrow K^0 s \pi^+ \pi^-$

No CPV found yet

- Nevertheless, we are setting the stage for very interesting measurements in the future
- Precision levels approaching the SM predictions (10-4)

Future

- Synergy with BESIII
- Will the Upgrade(s) finally provide the answers to our questions?