CP violation in b-hadron decays to charmless charged two-body final states at LHCb

Stefano Perazzini, on behalf of LHCb Collaboration
CERN & INFN Bologna
Outline

• Motivations, CPV observables and current experimental status

• Main ingredients of presented analyses:
 – Measurement of CP asymmetries in two-body $B^{0}_{(s)}$-meson decays to charged pions and kaons
 [arXiv:1805.06759 – submitted to PRD]
 – Search for CPV in $\Lambda_{b}^{0}\rightarrow pK^{-}$ and $\Lambda_{b}^{0}\rightarrow p\pi^{-}$ decays
 [LHCb-PAPER-2018-025 – will appear soon on arXiv]

• Conclusions
Motivation

- A rich set of physics processes participates in the $H_b \rightarrow h^+ h'^-$ decays
 - Tree and penguin decay topologies
 - Neutral B mixing

- CPV observables are sensitive to CKM angles γ and α and mixing phases ϕ_s and ϕ_d
 - presence of loop diagrams introduces hadronic uncertainties
 - presence of loop diagrams makes the CPV observables sensitive to New Physics contributions

CPV observable

- Time-dependent CPV asymmetries ($B^0 \to \pi^+\pi^-$ and $B^0_s \to K^+K^-$)

$$A(t) = \frac{\Gamma_{B^0(s) \to f}(t) - \Gamma_{B^0(s) \to f}(t)}{\Gamma_{B^0(s) \to f}(t) + \Gamma_{B^0(s) \to f}(t)} = -C_f \cos \left(\Delta m_{d(s)} t \right) + S_f \sin \left(\Delta m_{d(s)} t \right) \cosh \left(\frac{\Delta \Gamma_{d(s)}}{2} t \right) + A_f^{\Delta \Gamma} \sinh \left(\frac{\Delta \Gamma_{d(s)}}{2} t \right)$$

- CPV in the decay

$$C_f = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}$$

- CPV from mixing/decay interference

$$S_f = \frac{2 \text{Im} \lambda_f}{|\lambda_f|^2 + 1}$$

Condition not imposed

$$|C_f|^2 + |S_f|^2 + |A_f^{\Delta \Gamma}|^2 = 1$$

- Time-integrated CPV asymmetries ($B^0 \to K^+\pi^-$, $B^0_s \to \pi^+K^-$, $\Lambda^0_b \to pK^-$ and $\Lambda^0_b \to p\pi^-$)

$$A_{CP} = \frac{|\bar{A}_f|^2 - |A_f|^2}{|\bar{A}_f|^2 + |A_f|^2}$$
Current status (TD CPV)

\[B^0 \rightarrow \pi^+\pi^- \]

<table>
<thead>
<tr>
<th>Experiment</th>
<th>(S_{CP} (\pi^+\pi^-))</th>
<th>(C_{CP} (\pi^+\pi^-))</th>
<th>Correlation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaBar</td>
<td>(-0.68 \pm 0.10 \pm 0.03)</td>
<td>(-0.25 \pm 0.08 \pm 0.02)</td>
<td>(-0.06) (stat)</td>
<td>PRD 87 (2013) 052009</td>
</tr>
<tr>
<td>Belle</td>
<td>(-0.64 \pm 0.08 \pm 0.03)</td>
<td>(-0.33 \pm 0.06 \pm 0.03)</td>
<td>(-0.10) (stat)</td>
<td>PRD 88 (2013) 092003</td>
</tr>
<tr>
<td>LHCb (\int dt = 1.0 \text{ fb}^{-1})</td>
<td>(-0.71 \pm 0.13 \pm 0.02)</td>
<td>(-0.38 \pm 0.15 \pm 0.02)</td>
<td>0.38 (stat)</td>
<td>JHEP 1310 (2013) 183</td>
</tr>
<tr>
<td>Average</td>
<td>(-0.66 \pm 0.06)</td>
<td>(-0.31 \pm 0.05)</td>
<td>0.00</td>
<td>HFAG correlated average (\chi^2 = 0.9/4 \text{ dof (CL}=0.92 \Rightarrow 0.1\sigma))</td>
</tr>
</tbody>
</table>

- \(C_{\pi\pi} \) and \(S_{\pi\pi} \) are well constrained by B-factories and LHCb
 - All three experiments are in good agreement
- \(C_{KK} \) and \(S_{KK} \) are measured only by LHCb using 1 fb\(^{-1}\) @ 7 TeV
 - No measurement is available for \(A_{\Delta\Gamma}^{KK} \)

JHEP 1310 (2013) 183 – \(B^0 \rightarrow K^+K^- \)

\[C_{KK} = 0.14 \pm 0.11 \text{ (stat)} \pm 0.03 \text{ (syst)}, \]
\[S_{KK} = 0.30 \pm 0.12 \text{ (stat)} \pm 0.04 \text{ (syst)}, \]
Current status (TI CPV)

- Direct CPV in $B^0 \to K^+\pi^-$ and $B^0_s \to \pi^+K^-$ are dominated by LHCb measurement (with $L = 1 \text{ fb}^{-1}$)

- Direct CPV in $\Lambda_b^0 \to pK^-$ and $\Lambda_b^0 \to p\pi^-$ have been measured only by CDF so far

 [Phys. Rev. Lett. 113 242001 (2014)]

\[
A_{\text{CP}}(\Lambda_b^0 \to pK^-) = -0.10 \pm 0.08 \text{ (stat.)} \pm 0.04 \text{ (syst.)}
\]

\[
A_{\text{CP}}(\Lambda_b^0 \to p\pi^-) = +0.06 \pm 0.07 \text{ (stat.)} \pm 0.03 \text{ (syst.)}
\]
Main experimental ingredients to measure CPV

• Time-integrated CPV:
 – Final-state detection asymmetries (A_F)
 – Production asymmetry (A_P)
 • Thanks to a time-dependent analysis of $B^0 \rightarrow K^+\pi^-$ and $B_s^0 \rightarrow \pi^+K^-$ A_{CP} can be measured already free from A_P
 • For Λ_b^0 decays it is determined by difference with respect to other B species [Phys. Lett. B 774 (2017) 139]

\[A_{\text{exp.}} \approx A_{\text{CP}} + A_F + A_P \]

• Time-dependent CPV:
 – Flavour tagging
 – Decay-time resolution
 – Decay-time acceptance

\[A_{\text{exp.}}(t) \sim (1-2\omega) \exp(-\sigma_t^2 \Delta m^2/2) A(t) \]

\[A_{\text{exp.}}(t) \sim (1-2\omega) \exp(-\sigma_t^2 \Delta m^2/2) A(t) \]
Event selection

- Both analyses are based on the full Run1 statistics
 - 1 fb\(^{-1}\) @ 7 TeV + 2 fb\(^{-1}\) @ 8 TeV
- Event selection is based on two main ingredients
 - Particle identification
 - Separate the final states and reduce amount of cross contamination from other \(H_b \to h^+h^-\) modes ⇒ Calibrated using \(D^{*+} \to D^0(K^-\pi^+)\pi^+, \Lambda \to p\pi^-\) and \(\Lambda_c^+ \to pK^-\pi^+
 - MVA algorithm based on BDT to reduce combinatorial background

\(~94k\ B^0 \to K^+\pi^- ; ~7k\ B^0_s \to \pi^+K^-\)
\(~29k\ B^0 \to \pi^+\pi^-\)
\(~37k\ B^0_s \to K^+K^-\)
Event selection

- Both analyses are based on the full Run1 statistics
 - 1 fb-1 @ 7 TeV + 2 fb-1 @ 8 TeV
- Event selection is based on two main ingredients
 - Particle identification
 - Separate the final states and reduce amount of cross contamination from other $H_0 \rightarrow h^+h^-$ modes
 - Calibrated using $D^{*+} \rightarrow D^0(K^+\pi^+)$, $\Lambda \rightarrow p\pi^-$ and $\Lambda_c^+ \rightarrow pK^-\pi^+$
 - MVA algorithm based on BDT to reduce combinatorial background

LHCb-PAPER-2018-025 / PRELIMINARY
Final-state detection asymmetry

\[A_F = A_{\text{PID}} + A_D \]

- \(A_{\text{PID}} \) determined using \(D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+ \), \(\Lambda \rightarrow p\pi^- \) and \(\Lambda_c^+ \rightarrow pK^-\pi^+ \)

- \(A_D \) for K
 - using raw asymmetries of Cabibbo-Favoured charm decays \(D^+ \rightarrow K^-\pi^+\pi^+ \) and \(D^+ \rightarrow K^0\pi^+ \) [JHEP 07 (2014) 041]

- \(A_D \) for \(\pi \)
 - from partial reconstruction of \(D^{*+} \rightarrow D^0(K^-\pi^+\pi^-\pi^+)\pi^+ \) decays [PLB 713 (2012)]

- \(A_D \) for p
 - determined from simulation
 - generous systematic assigned due to the assumptions made regarding p/p interaction cross-section
Results

\[A_{CP}^{B^0} = -0.084 \pm 0.004 \pm 0.003 \]
\[A_{CP}^{B^0_s} = 0.213 \pm 0.015 \pm 0.007 \]

• Main syst.:
 – \(B^0 \): Det. asymmetry
 – \(B^0_s \): mass model

SM test assuming U-spin validity [PLB621(2005)126]

\[
\Delta = \frac{A_{CP}^{B^0}}{A_{CP}^{B^0_s}} + \frac{B(\overline{B}^0 \to \pi^+K^-)\tau_d}{B(\overline{B}^0 \to \overline{K}^+\pi^-)\tau_s} = -0.11 \pm 0.04 \pm 0.03
\]
from \(A_{CP} \)

• Thanks to the time-dependent analysis the production asymmetries are automatically subtracted
 – \(A_p(B^0) = (0.19 \pm 0.60)\% \)
 – \(A_p(B^0_s) = (2.4 \pm 2.1)\% \)

Compatible with expectation from Phys. Lett. B 774 (2017) 139
Results

LHCb-PAPER-2018-025 / PRELIMINARY

\[A_{\text{CP}}^{pK} = -0.020 \pm 0.013 \pm 0.019, \]
\[A_{\text{CP}}^{p\pi} = -0.035 \pm 0.017 \pm 0.020, \]

<table>
<thead>
<tr>
<th>Systematic uncertainty</th>
<th>(A_{\text{CP}}^{pK} [%])</th>
<th>(A_{\text{CP}}^{p\pi} [%])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaon or pion detection asymmetry</td>
<td>0.23</td>
<td>0.11</td>
</tr>
<tr>
<td>Proton detection asymmetry</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>PID asymmetry</td>
<td>0.74</td>
<td>0.73</td>
</tr>
<tr>
<td>(A_0^b) production asymmetry</td>
<td>1.40</td>
<td>1.40</td>
</tr>
<tr>
<td>Trigger asymmetry</td>
<td>0.53</td>
<td>0.55</td>
</tr>
<tr>
<td>Signal model</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Background model</td>
<td>0.23</td>
<td>0.47</td>
</tr>
<tr>
<td>PID efficiencies</td>
<td>0.57</td>
<td>0.74</td>
</tr>
<tr>
<td>Total</td>
<td>1.91</td>
<td>2.00</td>
</tr>
</tbody>
</table>

\[\Delta A_{\text{CP}} \equiv A_{\text{CP}}^{pK} - A_{\text{CP}}^{p\pi} \]
\[0.014 \pm 0.021 \pm 0.013 \]

Error reduced by more than x4 with respect to CDF 😊

No evidence for CPV 😞

- \(A_p \) is determined weighting the result in Phys. Lett. B 774 (2017) 139 for signal kinematics
Flavour tagging

- In this analysis tagging is used on a per-event basis
 - **Opposite Side (OS)** taggers
 - **Same Side (SS)** taggers
 - SSπ and SSP for B^0
 - SSK for B_s^0

- Calibration of mistag fraction \(\omega \):
 - Use time-dependent asymmetry of \(B^0 \to K^+\pi^- \) to calibrate OS, SS\(\pi \) and SSP
 - Use time-dependent asymmetry of \(B_s^0 \to D_s^-\pi^+ \) to calibrate SSK
Decay time resolution

- Calibration is performed measuring simultaneously the time-dependent asymmetries of $B^0 \rightarrow D^- \pi^+$ and $B_s^0 \rightarrow D_s^- \pi^+$ decays
 - Dilution from flavour tagging calibrated thanks to $B^0 \rightarrow D^- \pi^+$
 - Additional dilution in the $B_s^0 \rightarrow D_s^- \pi^+$ decay allows to calibrate decay-time resolution
 - Portability from $B \rightarrow D_h$ to $B \rightarrow h_h$ is studied on simulation

\[D = \exp(-\sigma_t \Delta m^2/2) \]
Decay-time acceptance

- Reconstruction efficiency as a function of decay-time is determined using $B^0 \rightarrow K^+\pi^-$ decays

 - Untagged decay rate of B^0 as a function of time is a pure exponential

 - For the other decay modes, simulation is used to study the differences

[Graphs showing efficiency as a function of time for various decay modes]
Results

\[C_{\pi^+\pi^-} = -0.34 \pm 0.06 \pm 0.01 \]
\[S_{\pi^+\pi^-} = -0.63 \pm 0.05 \pm 0.01 \]
\[\rho(C_{\pi\pi}, S_{\pi\pi}) = 0.448 \]

* Most precise from a single experiment
 – x2 better precision than previous LHCb
* Main syst.: cross-feed and 3-body model

Fixed parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta m_d)</td>
<td>(0.5065 \pm 0.0019 \text{ ps}^{-1})</td>
</tr>
<tr>
<td>(\Gamma_d)</td>
<td>(0.6579 \pm 0.0017 \text{ ps}^{-1})</td>
</tr>
<tr>
<td>(\Delta \Gamma_d)</td>
<td>0</td>
</tr>
<tr>
<td>(\Delta m_s)</td>
<td>(17.757 \pm 0.021 \text{ ps}^{-1})</td>
</tr>
<tr>
<td>(\Gamma_s)</td>
<td>(0.6654 \pm 0.0022 \text{ ps}^{-1})</td>
</tr>
<tr>
<td>(\Delta \Gamma_s)</td>
<td>0.083 \pm 0.007 \text{ ps}^{-1}</td>
</tr>
<tr>
<td>(\rho(\Gamma_s, \Delta \Gamma_s))</td>
<td>(-0.292)</td>
</tr>
</tbody>
</table>
Results

\[
C_{K+K^-} = 0.20 \pm 0.06 \pm 0.02 \\
S_{K+K^-} = 0.18 \pm 0.06 \pm 0.02 \\
A_{K+K^-}^{\Delta \Gamma} = -0.79 \pm 0.07 \pm 0.10
\]

- Main syst.: decay-time resolution, decay time acceptance and input parameters
- First measurement of \(A_{KK}^{\Delta \Gamma}\)
- Strong evidence of CPV (~4\(\sigma\)) in \(B_s^0 \rightarrow K^+K^-\)

Fixed parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta m_d)</td>
<td>0.5065 ± 0.0019 ps(^{-1})</td>
</tr>
<tr>
<td>(\Gamma_d)</td>
<td>0.6579 ± 0.0017 ps(^{-1})</td>
</tr>
<tr>
<td>(\Delta \Gamma_d)</td>
<td>0</td>
</tr>
<tr>
<td>(\Delta m_s)</td>
<td>17.757 ± 0.021 ps(^{-1})</td>
</tr>
<tr>
<td>(\Gamma_s)</td>
<td>0.6654 ± 0.0022 ps(^{-1})</td>
</tr>
<tr>
<td>(\Delta \Gamma_s)</td>
<td>0.083 ± 0.007 ps(^{-1})</td>
</tr>
<tr>
<td>(\rho(\Gamma_s, \Delta \Gamma_s))</td>
<td>-0.292</td>
</tr>
</tbody>
</table>

[arXiv:1805.06759]
Conclusions

• The latest measurements of CPV in b-hadron decays to charmless charged two-body final states at LHCb have been presented
 – All the analyses are based on the full Run1 sample corresponding to 1 fb^{-1} @ 7 TeV and 2 fb^{-1} @ 8 TeV

• Significant improvement with respect to previous measurements for all the presented quantities
 – Best measurement of $C_{\pi\pi}$ and $S_{\pi\pi}$ from a single experiment
 – Strong evidence of CPV in $B_s^0 \rightarrow K^+K^-$ decay at 4σ
 – A_{CP} in $\Lambda_b^0 \rightarrow pK^-$ and $\Lambda_b^0 \rightarrow p\pi^-$ have precisions 4 times better than previous measurement from CDF
 – No evidence of deviations from the SM

• Already x3 statistics is available from Run2
Backup
The LHCb detector
The LHCb detector

- **Vertex Locator (VELO)**
- **Silicon micro-strips**
- **RICH**
 - Three different radiators in order to cover a wide momentum range
- **Dipole magnet**
 - 4 Tm
- **Tracking stations**
 - Silicon micro-strips and straw-tubes
- **HCAL, ECAL and Preshower/SPD**
- **Muon detector**
How to exploit $H_b \rightarrow h^+h'^-$ decays

- CP asymmetries of $B^0 \rightarrow \pi^+\pi^-$
 - fundamental input to the isospin analysis to determine the CKM angle α
- First proposal to include also $B_s \rightarrow K^+K^-$ decays dates back to 1999
 - exploiting U-spin symmetry to constraint QCD uncertainties and determine γ and $-2\beta_s$
- A_{CP} of $B^0 \rightarrow K^+\pi^-$ and $B_s \rightarrow \pi^+K^-$ provide a test of the SM assuming U-spin symmetry

$$\Delta = \frac{A_{CP}^{B^0}}{A_{CP}^{B_s}} + \frac{\mathcal{B}(B_s \rightarrow \pi^+K^-)}{\mathcal{B}(B^0 \rightarrow K^+\pi^-)} \frac{\tau_d}{\tau_s} = 0$$
How to exploit $H_b \rightarrow h^+h'^-$ decays

- More recent studies aimed to reduce the impact of the uncertainty due to U-spin breaking
 - Combined analysis of $B^{0,\pm} \rightarrow \pi^{0,\pm}\pi^{0,\pm}$ and $B_s \rightarrow K^+K^-$

- Combining CP asymmetries in $B^0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$ with information from semileptonic $B^0 \rightarrow \pi\ell\nu$ and $B_s \rightarrow K\ell\nu$ allow to reduce the usage of U-spin symmetry

Systematic uncertainties

arXiv:1805.06759

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>$C_{\pi^+\pi^-}$</th>
<th>$S_{\pi^+\pi^-}$</th>
<th>$C_{K^+K^-}$</th>
<th>$S_{K^+K^-}$</th>
<th>$A_{K^+K^-}^{\Delta\Gamma}$</th>
<th>$A_{CP}^{B^0}$</th>
<th>$A_{CP}^{B^0_s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-dependent efficiency</td>
<td>0.0011</td>
<td>0.0004</td>
<td>0.0020</td>
<td>0.0017</td>
<td>0.0778</td>
<td>0.0004</td>
<td>0.0002</td>
</tr>
<tr>
<td>Time-resolution calibration</td>
<td>0.0014</td>
<td>0.0013</td>
<td>0.0108</td>
<td>0.0119</td>
<td>0.0951</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>Time-resolution model</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0003</td>
<td>negligible</td>
<td>negligible</td>
</tr>
<tr>
<td>Input parameters</td>
<td>0.0025</td>
<td>0.0024</td>
<td>0.0092</td>
<td>0.0107</td>
<td>0.0480</td>
<td>negligible</td>
<td>0.0001</td>
</tr>
<tr>
<td>OS-tagging calibration</td>
<td>0.0018</td>
<td>0.0021</td>
<td>0.0018</td>
<td>0.0019</td>
<td>0.0001</td>
<td>negligible</td>
<td>negligible</td>
</tr>
<tr>
<td>SSK-tagging calibration</td>
<td>—</td>
<td>—</td>
<td>0.0061</td>
<td>0.0086</td>
<td>0.0004</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SSc-tagging calibration</td>
<td>0.0015</td>
<td>0.0017</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>negligible</td>
<td>negligible</td>
</tr>
<tr>
<td>Cross-feed time model</td>
<td>0.0075</td>
<td>0.0059</td>
<td>0.0022</td>
<td>0.0024</td>
<td>0.0003</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>Three-body bkg.</td>
<td>0.0070</td>
<td>0.0056</td>
<td>0.0044</td>
<td>0.0043</td>
<td>0.0304</td>
<td>0.0008</td>
<td>0.0043</td>
</tr>
<tr>
<td>Comb.-bkg. time model</td>
<td>0.0016</td>
<td>0.0016</td>
<td>0.0004</td>
<td>0.0002</td>
<td>0.0019</td>
<td>0.0001</td>
<td>0.0005</td>
</tr>
<tr>
<td>Signal mass model (resol.)</td>
<td>0.0027</td>
<td>0.0025</td>
<td>0.0015</td>
<td>0.0015</td>
<td>0.0023</td>
<td>0.0001</td>
<td>0.0041</td>
</tr>
<tr>
<td>Signal mass model (tails)</td>
<td>0.0007</td>
<td>0.0008</td>
<td>0.0013</td>
<td>0.0013</td>
<td>0.0016</td>
<td>negligible</td>
<td>0.0003</td>
</tr>
<tr>
<td>Comb.-bkg. mass model</td>
<td>0.0001</td>
<td>0.0003</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0016</td>
<td>negligible</td>
<td>0.0001</td>
</tr>
<tr>
<td>PID asymmetry</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.0025</td>
<td>0.0025</td>
<td>0.0025</td>
</tr>
<tr>
<td>Detection asymmetry</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.0014</td>
<td>0.0014</td>
<td>0.0014</td>
</tr>
<tr>
<td>Total</td>
<td>0.0115</td>
<td>0.0095</td>
<td>0.0165</td>
<td>0.0191</td>
<td>0.0966</td>
<td>0.0030</td>
<td>0.0066</td>
</tr>
</tbody>
</table>