Study of the normalization modes in the search for the rare $\mathrm{K}_{\mathrm{L}}{ }^{0} \longrightarrow>\pi^{0} v \bar{v}$ with the KOTO detector

Brian Beckford
University of Michigan
On behalf of the KOTO collaboration

2018 ICHEP Intl. Conference
July 7, 2018

$\mathrm{K}_{\mathrm{L}}{ }^{0} \longrightarrow>\pi^{0} \nu \bar{\nu}$

- SM predicted Branching Ratio of ($\left.\mathrm{K}_{\mathrm{L}}{ }^{0}->\pi v \overline{\mathrm{v}}\right)$ predicted to be $(3.00+-0.30) \times 10^{-11}$
- Clean channel with small theoretical uncertainties (1-2\%)
- 2nd order FCNC process directly violates CP

Fig. Unitarity triangle

$\mathrm{K}_{\mathrm{L}}{ }^{0} \longrightarrow \pi^{0} \nu \bar{\nu}$

- SM predicted Branching Ratio of ($\mathrm{K}_{\mathrm{L}}{ }^{0}->\pi v \overline{\mathrm{v}}$) predicted to be $(3.00+-0.30) \times 10^{-11}$
- Clean channel with small theoretical uncertainties (1-2\%)
- 2nd order FCNC process directly violates CP
- Sensitive to New Physics (NP) beyond the Standard Model

$K \longrightarrow>\pi v v$ searches

- Charged decay measurement (NA62) provides important information
- SM BR ($\mathrm{K}^{+}->\pi v v$) predicated to be $(9.11+-0.72) \times 10^{-11}$
- Grossman-Nir: indirect limit based on isospin relations between $\left(\mathrm{K}^{+}->\pi v v\right)$ and $\left(\mathrm{K}_{\mathrm{L}}{ }^{0}->\pi v v\right)$
$\cdot \mathrm{BR}\left(\mathrm{K}_{\mathrm{L}}{ }^{0}->\pi v v\right)<4.4 \times \mathrm{BR}\left(\mathrm{K}^{+}->\pi v v\right) \longrightarrow \mathrm{BR}\left(\mathrm{K}_{\mathrm{L}}{ }^{0}->\pi v v\right)<1.5 \times 10^{-9}$

$\mathrm{K}_{\mathrm{L}}{ }^{0} \longrightarrow>\pi^{0} v \bar{\nu}$

- KOTO will contribute a new arc to the narrative

Experimental setup

-Experiment performed in the Hadron Experimental Facility (HEF) at J-PARC

- 30 GeV proton beam on stationary gold target
-Secondary neutral beam extracted for KOTO experiment
"K0 at TOkai"

1
Hadron Experimental Facility IPNS: nuclear and particle physics

2
Neutrino Experimental Facility IPNS: neutrino physics

3 Materials and Life Science
Experimental Facility
IMSS: material science \& life science
4 Injector Linac
400 MeV proton linac

5
RCS, Rapid Cycle Synchrotron
3 GeV proton synchrotron

6
MR, Main Ring
50 GeV proton synchrotron

Sciences at J-PARC, Japan Proton Accelerator Research Complex, in the Tokai campus (Note) J-PARC is operated jointly by KEK and JAEA, Japan Atomic Energy Agency

KOTO beam line

Highly collimated neutral "pencil" beam

Fig. Depiction of neutral beam line production Target to detector distance $=21.5 \mathrm{~m}$

Fig. Outer vacuum container houses all main KOTO detectors

Fig. Layout inside Hadron Hall

KOTO detectors

-Two sub-system design and operation:
-Cesium lodide Calorimeter (CsI)
-Hermetic veto detectors
-Charged vetoes removes events with charged particle
-Photon vetoes to detect other $\mathrm{K}_{\mathrm{L}}{ }^{0}$ decays

Background is not our friend

Decay Mode	Branching Ratio
$K_{L}^{0} \rightarrow \pi^{ \pm} e^{\mp} \nu_{e}$	0.4055 ± 0.0011
$K_{L}^{0} \rightarrow \pi^{ \pm} \mu^{\mp} \nu_{\mu}$	0.2704 ± 0.0007
$K_{L}^{0} \rightarrow 3 \pi^{0}$	0.1952 ± 0.0012
$K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$	0.1254 ± 0.0005
$K_{L}^{0} \rightarrow 2 \pi^{0}$	$(0.864 \pm 0.006) \times 10^{-3}$
$K_{L}^{0} \rightarrow 2 \gamma$	$(0.547 \pm 0.004) \times 10^{-3}$

Table. Branching ratios of various Kaon decays (PDG)

Fig. KOTO detector components

Experimental approach

- Detect 2 photon hits from π^{0} (Csl) + nothing else (Vetoes)
- High efficiency required to reject events with charged particles or other photons
- Require events to have large transverse momentum

Signal reconstruction

- Detect 2 photon hits from π^{0} (Csl) + nothing else (Vetoes)
- CSI-> 2 photon hits
- Energy and position
- Constraints
- π^{0} mass
- Decay position on beam line
- Reconstruct decay vertex and calculate transverse momentum

Signal distribution

Fig. Monte Carlo of signal and background distributions

Fig. Monte Carlo of signal and background distributions

Fig. Monte Carlo sample of signal ($\mathrm{K}_{\mathrm{L}}{ }^{0}->\mathrm{Tvv}$) distribution

KOTO timeline

First run results

2013 results showed the largest background contribution for neutron generated events

- Expected / observed $=0.34 / 1$
- BR (KL $\left.{ }^{0}->\pi V V\right)<5.1 \times 10^{-8}$ at 90% C.L.

Improvements since 2013 run
-Suppression of neutron background
-Improved collimator alignment
-Replaced vacuum window

- Special runs to study neutron events
- Photons and charged pions
-Additional downstream vetoes

Halo neutrons hitting NCC (π^{0})

Fig. Reconstructed π^{0} Pt vs. decay vertex position

Analysis

-Blind analysis
-Signal reconstruction
-Study of neutral normalization modes because they were fully reconstructed and clearly identified.
-Background estimation
-Single Event Sensitivity
-KL ${ }^{0}$ yield
-Signal acceptance

- Branching Ratio

$$
S E S=\frac{1}{N_{K_{L}^{0}} \times A_{\text {signal }}}
$$

-Number of observed events

Normalization modes

-Determine the number of $\mathrm{K}_{\mathrm{L}} 0$

- $\mathrm{K}_{\mathrm{L}}{ }^{0}$ flux ~ number passing through the beam exit

- $\mathrm{K}_{\mathrm{L}}{ }^{0}$ yield \sim number of remaining reconstructed events after veto and kinematics cuts
-Normalization modes are also used to:
-Evaluate of kinematic and veto cut efficiencies

- Evaluate MC reproducibility of data

$\mathrm{K}_{\mathrm{L}}{ }^{0} \longrightarrow>3 \pi^{0}$ Event distributions

$K_{L}{ }^{0} \rightarrow>3 \pi^{0}$
-Efficiency of kinematic requirements

- $\varepsilon^{i}=\left(\right.$ Number of reconstructed KL ${ }^{0}$ events with all cuts) / (Number of reconstructed KL ${ }^{0}$ events w/o $i^{\text {th }}$ cut)
-Data well reproduced by MonteCarlo

Fig. Reconstructed mass

Fig. Reconstructed decay vertex position

$\mathrm{K}_{L^{0}} 0 \rightarrow 2 \pi^{0}$ Event distributions

$K_{L}{ }^{0} \longrightarrow>\mathbf{K}^{0}$
-Efficiency of kinematic requirements

- $\varepsilon^{\mathrm{i}}=\left(\right.$ Number of reconstructed KL ${ }^{0}$ events with all cuts) / (Number of reconstructed KL ${ }^{0}$ events w/o $i^{\text {th }}$ cut)
-Data well reproduced by MonteCarlo

Fig. Reconstructed mass

Fig. Reconstructed decay vertex position

$\mathrm{K}_{\mathrm{L}}{ }^{0} \longrightarrow 2 \gamma$ Event distributions

$$
K_{L}{ }^{0}->2 Y
$$

-Efficiency of kinematic requirements

- $\varepsilon^{\mathrm{i}}=\left(\right.$ Number of reconstructed KL ${ }^{0}$ events with all cuts) / (Number of reconstructed KL ${ }^{0}$ events w/o $i^{\text {th }}$ cut)
-Data well reproduced by MonteCarlo

Fig. Reconstructed traverse momentum

Fig. Reconstructed decay vertex position

$\mathrm{K}_{\mathrm{L}}{ }^{0}$ yield

- Yield obtained from three normalization modes are within systematics
- $\mathrm{K}_{\mathrm{L}}{ }^{0}$ yield $\left(\mathrm{K}_{\mathrm{L}}{ }^{0}->2 \Pi^{0}\right)=4.58 \times 10^{12}$ from $2.2 \times 10^{19} \mathrm{POT}$

Fig. Calculated $\mathrm{K}_{\mathrm{L}}{ }^{0}$ yield at beam exit

Summary

- Summary of KOTO first results
-2013 first run set a $B R\left(K_{L}->\pi^{0} V\right.$ v) upper limit of $<5.8 \times 10^{-8}$ (90% C.L.) (PTEP 021C01)
- Present status
-In 2015, collected 20 times larger data set than the 2013 run
$\cdot K_{L}{ }^{0}$ yield $\left(K_{L}{ }^{0}->2 \pi^{0}\right)=4.58 \times 10^{12}$ (at beam exit)
-Sensitivity of 2015 run will be determined based on this result
-Data collected in 2016-2018 is being analyzed
-2015 run results will be presented in the next talk
-DON'T MISS IT!

