

Study of the normalization modes in the search for the rare K_L^0 —> $\pi^0 \nu \bar{\nu}$ with the KOTO detector

Brian Beckford
University of Michigan
On behalf of the KOTO collaboration

2018 ICHEP Intl. Conference July 7, 2018

-->π 0 νν

- •SM predicted Branching Ratio of $(K_L^0 -> \pi v \overline{v})$ predicted to be (3.00+-0.30) x 10⁻¹¹
- Clean channel with small theoretical uncertainties (1-2%)
- 2nd order FCNC process directly violates CP

BR $(K^+ -> \pi^+ vv) = (9.11 \pm 0.72) \times 10^{-11}$ (Buras ...et. al 2015) BR (K, $->\pi^0 vv$) = (3.00 ± 0.30) x 10⁻¹¹ (Buras ...et. al 2015)

$K_L^0 \longrightarrow \pi^0 \nu \bar{\nu}$

- •SM predicted Branching Ratio of $(K_L^0 -> \pi v \overline{v})$ predicted to be (3.00+-0.30) x 10⁻¹¹
- Clean channel with small theoretical uncertainties (1-2%)
- 2nd order FCNC process directly violates CP
- Sensitive to New Physics (NP) beyond the Standard Model

K—>πνν searches

- Charged decay measurement (NA62) provides important information
 - •SM BR (K+ $->\pi\nu\nu$) predicated to be (9.11+-0.72) x 10⁻¹¹
- Grossman-Nir: indirect limit based on isospin relations between $(K^+->\pi\nu\nu)$ and $(K_L^0->\pi\nu\nu)$
- •BR $(K_L^0 -> \pi \nu \nu) < 4.4 \text{ x BR}(K^+ -> \pi \nu \nu) \longrightarrow BR (K_L^0 -> \pi \nu \nu) < 1.5 \text{ x } 10^{-9}$

$K_L^0 \longrightarrow \pi^0 \nu \bar{\nu}$

KOTO will contribute a new arc to the narrative

Experimental setup

- Experiment performed in the Hadron Experimental Facility (HEF) at J-PARC
- 30 GeV proton beam on stationary gold target
- Secondary neutral beam extracted for KOTO experiment

"K⁰ at TOkai"

- Hadron Experimental Facility
 IPNS: nuclear and particle physics
- Neutrino Experimental Facility
 IPNS: neutrino physics
- MLF
 Materials and Life Science
 Experimental Facility
 IMSS: material science & life science
- 4 Injector Linac 400 MeV proton linac
- **RCS, Rapid Cycle Synchrotron** 3 GeV proton synchrotron
- 6 MR, Main Ring 50 GeV proton synchrotron

Sciences at J-PARC, Japan Proton Accelerator Research Complex, in the Tokai campus. (Note) J-PARC is operated jointly by KEK and JAEA, Japan Atomic Energy Agency.

KOTO beam line

Highly collimated neutral "pencil" beam Collimators

Fig. Depiction of neutral beam line production

Target to detector distance = 21.5 m

Evacuated to ~10-5 Pa to suppress background

3m radius

Fig. Outer vacuum container houses all main KOTO detectors

KOTO detectors

•Two sub-system design and operation:

- Cesium Iodide Calorimeter (CsI)
- Hermetic veto detectors
 - Charged vetoes removes events with charged particle
 - •Photon vetoes to detect other K_L⁰ decays

Background is not our friend

Decay Mode	Branching Ratio
$K_L^0 \to \pi^{\pm} e^{\mp} \nu_e$	0.4055 ± 0.0011
$K_L^0 \to \pi^{\pm} \mu^{\mp} \nu_{\mu}$	0.2704 ± 0.0007
$K_L^0 o 3\pi^0$	0.1952 ± 0.0012
$K_L^0 \to \pi^+\pi^-\pi^0$	0.1254 ± 0.0005
$K_L^0 o 2\pi^0$	$(0.864 \pm 0.006) \times 10^{-3}$
$K_L^0 o 2\gamma$	$(0.547 \pm 0.004) \times 10^{-3}$

Table. Branching ratios of various Kaon decays (PDG)

Fig. KOTO detector components

Experimental approach

• Detect 2 photon hits from π^0 (CsI) + nothing else (Vetoes)

 High efficiency required to reject events with charged particles or other photons

 Require events to have large transverse momentum

$$\cos\theta = 1 - \frac{M_{\pi^0}^2}{2E_1E_2} \xrightarrow{P_1} \begin{array}{c} E_1 & E_2 \\ \hline P_2 & \hline \\ \hline R_L & Q & \hline \\ K_L & Q & \hline \\ \hline CsI Calorimeter \\ \end{array}$$

Signal reconstruction

• Detect 2 photon hits from π^0 (CsI)

+ nothing else (Vetoes)

- CSI—> 2 photon hits
 - Energy and position
- Constraints
 - π⁰ mass
 - Decay position on beam line
- Reconstruct decay vertex and calculate transverse momentum

Signal distribution

Fig. Monte Carlo sample of signal $(K_L^0 -> \pi v \dot{v})$ distribution

Fig. Monte Carlo of signal and background distributions

KOTO timeline

First run results

2013 results showed the largest background contribution for neutron generated events

- Expected / observed = 0.34/1
- •BR $(K_L^0 -> \pi vv) < 5.1 \times 10^{-8} \text{ at } 90\% \text{ C.L.}$

Improvements since 2013 run

- Suppression of neutron background
 - •Improved collimator alignment
 - •Replaced vacuum window
 - •Special runs to study neutron events
- Photons and charged pions
 - Additional downstream vetoes

Analysis

- Blind analysis
 - Signal reconstruction
 - •Study of neutral normalization modes because they were fully reconstructed and clearly identified.
 - Background estimation

- Single Event Sensitivity
 - •KL⁰ yield
 - Signal acceptance

 $SES = \frac{1}{N_{K_L^0} \times A_{\text{signal}}}$

- Branching Ratio
 - Number of observed events

$$BR(K_L^0 \to \pi^0 \nu \bar{\nu}) = \frac{N_{\text{signal}}}{N_{K_L^0} \times A_{\text{signal}}}$$

Normalization modes

- •Determine the number of K_L⁰
 - •KL⁰ flux ~ number passing through the beam exit

 K_L^0 decays π^0 π^0 BR~ 19.52%

•K_L⁰ yield ~ number of remaining reconstructed events after veto and kinematics cuts

- Normalization modes are also used to:
 - Evaluate of kinematic and veto cut efficiencies

Evaluate MC reproducibility of data

K_L^0 —>3 π^0 Event distributions

$K_L^0 -> 3\pi^0$

- Efficiency of kinematic requirements
- •εⁱ= (Number of reconstructed K_L⁰ events with all cuts) / (Number of reconstructed K_L⁰ events w/o ith cut)
- Data well reproduced by MonteCarlo

Fig. Reconstructed mass

Fig. Reconstructed decay vertex position

$K_L^0 \longrightarrow 2\pi^0$ Event distributions

$K_L^0 -> 2\pi^0$

- Efficiency of kinematic requirements
- •εⁱ= (Number of reconstructed K_L⁰ events with all cuts) / (Number of reconstructed K_L⁰ events w/o ith cut)
- Data well reproduced by MonteCarlo

Fig. Reconstructed decay vertex position

K_L^0 —>2 γ Event distributions

$K_L^0 -> 2\gamma$

- Efficiency of kinematic requirements
- •εⁱ= (Number of reconstructed K_L⁰ events with all cuts) / (Number of reconstructed K_L⁰ events w/o ith cut)
- Data well reproduced by MonteCarlo

Fig. Reconstructed traverse momentum

Fig. Reconstructed decay vertex position

K_L⁰ yield

- Yield obtained from three normalization modes are within systematics
- K_L^0 yield $(K_L^0 -> 2\pi^0) = 4.58 \times 10^{12}$ from 2.2 x 10^{19} POT

Mode	Yield at Beam Exit
KL—>2π ⁰	(4.58+-0.04) x 10 ¹²
<i>K</i> L—>2γ	(4.38+-0.02) x 10 ¹²
KL—>3π ⁰	(4.62+-0.02) x 10 ¹²

Fig. Calculated K_L⁰ yield at beam exit

Summary

- Summary of KOTO first results
 - •2013 first run set a BR(K_L−>π⁰vv) upper limit of < 5.8 x 10⁻⁸ (90% C.L.) (PTEP 021C01)
- Present status
 - In 2015, collected 20 times larger data set than the 2013 run
 - • K_L^0 yield $(K_L^0 -> 2\pi^0) = 4.58 \times 10^{12}$ (at beam exit)
 - ·Sensitivity of 2015 run will be determined based on this result
 - Data collected in 2016-2018 is being analyzed
 - •2015 run results will be presented in the next talk
 - •DON'T MISS IT!

