Contribution ID: 800 Type: Parallel

Search for the rare decay $B \to \Lambda \bar{p} \nu \bar{\nu}$

Thursday, 5 July 2018 14:20 (20 minutes)

We search for the rare flavor-changing neutral current process $B^- \to \Lambda \bar p \nu \bar \nu$ using data from the BABAR experiment. A total of $424 {\rm fb}^{-1}$ of $e^+ e^-$ collision data collected at the center-of-mass energy of the $\Upsilon(4S)$ resonance is used in this study, corresponding to a sample of $(471 \pm 3) \times 10^6~B - \bar{B}$ pairs. Signal $B^- \to \Lambda \bar p \nu \bar n \bar u$ candidates are identified by first exclusively reconstructing a B^+ decay in one of many possible decays to hadronic final states, then examining detector activity that is not associated with this reconstructed B^- decay for evidence of a signal decay. The data yield is found to be consistent with the expected background contribution under a null signal hypothesis, resulting in an estimated branching fraction of $cal B(B^- \to \Lambda \bar p \nu \bar \nu) = (0.4 \pm 1.1 \pm 0.6) \times 10^{-5}$, where the uncertainties are statistical and systematic, respectively. An upper limit of $cal B(B^- \to \Lambda \bar p \nu \bar \nu) < 3.0 \times 10^{-5}$ at the 90% confidence level is determined.

Primary authors: ANULLI, Fabio (Sapienza Universita e INFN, Roma I (IT)); SEDDON, Robert (McGill Uni-

versity)

Presenter: SEDDON, Robert (McGill University)

Session Classification: Quark and Lepton Flavor Physics

Track Classification: Quark and Lepton Flavor Physics