

Radiative B Decays at Belle

Akimasa Ishikawa (Tohoku University)

Contents

- Evidence for Isospin Violation in B \rightarrow K* γ
- Time Dependent CP Violation in B \rightarrow K_S $\eta\gamma$
- Measurements of ΔA_{CP} and Isospin asymmetry in $B \rightarrow X_s \gamma$ with sum-of-exclusive technique

All the analyses used a full data sample of 711fb⁻¹ containing 772x10⁶ BB events.

89fb⁻¹ off resonance data is used for the third analysis.

Wilson Coefficients in $b \rightarrow s\gamma$ process

- In effective Hamiltonian approach, b→s
 transition in the SM can be described by
 real Wilson coefficients which correspond to
 short distance couplings
 - b \rightarrow s γ : C₇SM \sim -0.3

at m_b scale

- b→sg: $C_8^{SM} \sim -0.15$
- If NP contributes,
 - Deviation from the SM values
 - New coefficients appear
 - Imaginary parts; Im(C₇), Im(C₈)
 - Chirality flipped coefficients; C₇' and C₈'

$$- q_{L(R)} \rightarrow q_{R(L)}$$

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$$

$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b \left(\bar{s}_L \sigma_{\mu\nu} b_R\right) F^{\mu\nu}$$

$$\mathcal{O}_8 = \frac{g}{16\pi^2} m_b \left(\bar{s}_L \sigma_{\mu\nu} T^a b_R \right) G^{a\mu\nu}$$

O₂ also contributes

$b \rightarrow s\gamma$

d

- The decay
 - Dominated by one loop penguin diagrams (FCNC)
 - Sensitive to new physics (NP) in the loop
 - The photon is polarized predominantly left-handed in the SM
 - If sizable right-handed photon contribution (C₁') found → clear NP signal
- Inclusive BF is consistent with the SM prediction
 - Strong constraint on $|C_7|^2 + |C_7|^2$ and thus NP
- Direct CP Violation in B \rightarrow Xs γ consistent with theory
 - Constraint on combination of C₇ and C₈,
- Time dependent CP Violation in B \rightarrow K*0 γ consistent with 0 but still uncertainty large
 - Mild constraint on Im(C₇C₇'e^{-i2φ1})

T. Horiguchi, A. Ishikawa et al. PRL 119 191802 (2017)

Evidence for Isospin Violaton in B \rightarrow K* γ

$B \rightarrow K^* \gamma$

- BF $\sim 4 \times 10^{-5}$
 - About 12% of inclusive B→Xsγ rate

- Prediction of branching fraction is limited by an uncertainty of tensor form factor at $q^2=0$; $T_1(0)$, and not so sensitive to NP
- By taking a ratio of decay widths (or BF), a dominant uncertainty due to T₁(0) cancels out thus sensitive to new physics
 - Isospin Asymmetry; Δ_{0+}
 - Sensitive to new physics in annihilation diagrams

$$\Delta_{0+} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)}$$

Results

- Four subdecay modes are reconstructed and simultaneous fit is performed.
- First Evidence for Δ_{0+} with 3.1 σ

$$\mathcal{B}(B^0 \to K^{*0}\gamma) = (3.96 \pm 0.07 \pm 0.14) \times 10^{-5},$$
 $\mathcal{B}(B^+ \to K^{*+}\gamma) = (3.76 \pm 0.10 \pm 0.12) \times 10^{-5},$
 $A_{CP}(B^0 \to K^{*0}\gamma) = (-1.3 \pm 1.7 \pm 0.4)\%,$
 $A_{CP}(B^+ \to K^{*+}\gamma) = (+1.1 \pm 2.3 \pm 0.3)\%,$
 $A_{CP}(B \to K^*\gamma) = (-0.4 \pm 1.4 \pm 0.3)\%,$

$$\Delta_{0+} = (+6.2 \pm 1.5 \pm 0.6 \pm 1.2)\%,$$

$$\Delta A_{CP} = (+2.4 \pm 2.8 \pm 0.5)\%,$$

Mode	N_S^B	N_S^B	€ [%]	$\mathcal{B} [10^{-5}]$	A_{CP} [%]
$B^0 \to K_S^0 \pi^0 \gamma$				$4.00 \pm 0.27 \pm 0.24$	_
				$3.95 \pm 0.07 \pm 0.14$	
$B^+ \to K^+ \pi^0 \gamma$	$572 \pm 32 \pm 12$	$562 \pm 31 \pm 11$	3.66 ± 0.12	$3.91 \pm 0.16 \pm 0.16$	$+1.0 \pm 3.6 \pm 0.3$
$B^+ \to K_S^0 \pi^+ \gamma$	$745 \pm 32 \pm 8$	$721 \pm 32 \pm 9$	5.01 ± 0.14	$3.69 \pm 0.12 \pm 0.12$	$+1.3 \pm 2.9 \pm {}^{7}0.4$

$$\Delta_{0+}$$

 First evidence of isospin violation in b→s transition with 3.1σ significance.

$$\Delta_{0+} = (+6.2 \pm 1.5(\text{stat.}) \pm 0.6(\text{syst.}) \pm 1.2(f_{+-}/f_{00}))\%$$

- Dominant uncertainties are statistical one and due to f_{+}/f_{00} .
- New Belle result is consistent with Babar, and also theoretical predictions within the SM by Kagan and Neubert, and Lyon and Zwicky
- This result will be used to constrain new physics

For example,
Mahmoudi, JHEP 12 (2007) 026
Descotes-Genon, Ghosh, Matias, Ramon, JHEP 06 (2011) 099
Lyon, Zwicky, PRD 88, 094004 (2013).

H. Nakano, A. Ishikawa et al. PRD97,092003 (2018)

Time Dependent CP Violation in B \rightarrow K_S $\eta\gamma$

Time Dependent CP Violation in B \rightarrow P⁰Q⁰ γ

- Photons in $b \rightarrow s\gamma$ is predominantly polarized left-handed.
 - No time dependent CPV in B→P⁰Q⁰γ, where P and Q are pseudo-scalar mesons

$$\left|S_{CP}\right| \approx \frac{2m_s}{m_b} \sin 2\phi_1 \sim 2 \%$$

- If NP which has right-handed current contributed to $b \rightarrow s\gamma$, large CPV is possible.
- We search for the time dependent CPV with $B \rightarrow K_S \eta \gamma$ for the first time at Belle

$$A(t) = rac{\Gamma(B^0 o f_{CP}; t) - \Gamma(B^0 o f_{CP}; t)}{\Gamma(ar{B}^0 o f_{CP}; t) + \Gamma(B^0 o f_{CP}; t)} = \mathcal{S}_{f_{CP}} \sin(\Delta m_d t) + \mathcal{A}_{f_{CP}} \cos(\Delta m_d t)$$

dotted : helicity flip Small interference

NP case

red : helicity flip + NP Large interference → CPV

Result

We obtained

$$S = -1.32 \pm 0.77(\text{stat.}) \pm 0.36(\text{syst.}),$$

 $A = -0.48 \pm 0.41(\text{stat.}) \pm 0.07(\text{syst.})$

• The central value is outside the physical boundary $S^2+A^2=1$ but is consistent with null asymmetry within 2σ

(a)

5MeV/c²

(b)

Events/(25MeV)

⋖

0.5

-0.5

New Measurements of ΔA_{CP} and Isospin asymmetry in $B \rightarrow X_s \gamma$ with sum-of-exclusive technique

$BF(B \rightarrow Xs \gamma)$

- The BF(B \rightarrow Xs γ) is very sensitive to NP models
- WA and theoretical prediction are consistent and comparable precision ~7%
 - Strong constraint on NP
- At Belle II, the precision on the BF will be 3% level.

Need to reduce theoretical uncertainty to search for NP!

Observables	Belle 0.71 ab^{-1}	Belle II 5 ab ⁻¹	Belle II 50 ab^{-1}
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{lep-tag}}$	5.3%	3.9%	3.2%
$Br(B \to X_s \gamma)_{\rm inc}^{\rm had\text{-}tag}$	13%	7.0%	4.2%
$Br(B \to X_s \gamma)_{\text{sum-of-ex}}$	10.5%	7.3%	5.7%
$\Delta_{0+}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.4%	0.94%	0.69%
$\Delta_{0+}(B \to X_{s+d}\gamma)_{\mathrm{inc}}^{\mathrm{had\text{-}tag}}$	9.0%	2.6%	0.85%

Theory uncertainty on BF(B \rightarrow Xs γ)

Theory uncertainty in total: 7%

Individual contributions to the total uncertainty are of nonperturbative ($\pm 5\%$), higher-order ($\pm 3\%$), interpolation ($\pm 3\%$), and parametric ($\pm 2\%$) origin. They are combined

M. Misiak et al, PRL 114, 221801 (2015)

- Largest one is nonperturbative effects which are dominated by resolved photon contributions $(\Delta B_{s\gamma})$. A hard gluon (O_8) absorbed by a (spectator) quark, and then a photon emitted.
 - Interference between this effect and leading hard process is proportional to quark charge
- ΔB_{sv} can be related to Isospin Asymmetry (Δ_{0+})

$$\Delta_{0+} = \frac{\Gamma(B^0 \to X_s \gamma) - \Gamma(B^+ \to X_s \gamma)}{\Gamma(B^0 \to X_s \gamma) + \Gamma(B^+ \to X_s \gamma)}$$
$$\frac{\Delta \mathcal{B}}{\mathcal{B}} \simeq -\frac{Q_d + Q_u}{Q_d - Q_u} \Delta_{0-} (1 \pm 0.3) = -\frac{(1 \pm 0.3)}{3} \Delta_{0-}$$

S. J. Lee, M. Neubert, G. Paz, PRD **75**, 114005 (2007).

M. Misiak, Acta Phys. Polon. B **40**, 2987 (2009)

M. Benzke, S. J. Lee, M. Neubert, G. Paz, JHEP 08 (2010) 099

Measurement of Isospin Asymmetry improves the theoretical uncertainty if the value is consistent with zero

$A_{CP}(B \rightarrow X_s \gamma)$

- $A_{CP}(B \rightarrow X_s \gamma)$ is sensitive probe to search for new phases in NP models.
- The WA of $A_{CP}(B \rightarrow X_s \gamma)$ is consistent with null asymmetry.
- The experimental precision 2% is already comparable to theory uncertainty ~1.7%, which is dominated by resolved photon contributions.

Difference of A_{CP} (ΔA_{CP})

- However, by taking the difference of A_{CP} between charged and neutral B (ΔA_{CP}) , the terms having CPV in SM cancel out, and only the term proportional to $Im(C_8/C_7)$ remains.
- In the SM, both C_7 and C_8 are real while in NP models, this observable could be a level of 10% in magnitude.
- If finite ΔA_{CP} is measured, it is clear sign of new physics.

$$\Delta A_{CP} = A_{CP}(B^+ \to X_s^+ \gamma) - A_{CP}(B^0 \to X_s^0 \gamma)$$

$$= 4\pi^2 \alpha_s \frac{\tilde{\Lambda}_{78}}{m_b} \text{Im} \left(\frac{C_8}{C_7}\right),$$

$$\approx 0.12 \left(\frac{\tilde{\Lambda}_{78}}{100 \text{ MeV}}\right) \text{Im} \left(\frac{C_8}{C_7}\right), \qquad 17 \text{ MeV} < \tilde{\Lambda}_{78} < 190 \text{ MeV}$$

M. Benzke, S. J. Lee, M. Neubert and G. Paz, PRL 106, 141801 (2011)

• We performed measurement of Δ_{0-} and ΔA_{CP} as well as A_{CP} for charged, neutral, averaged and combined B decays

Measurement of Δ_{0-} and ΔA_{CP}

- We reconstruct 38 Xs decay modes with M_{xs}<2.8GeV
 - 11 flavor non specific (fns) modes as marked * are only used for Δ_{0-} measurement.
- Five M_{bc} distributions (B+, B-, B0, B0 and B_{fns}) for on resonance data and three M_{bc} distributions (charged, neutral and fns B) for off-resonance data are fitted simultaneously to extract physics parameters.

$$\Delta_{0-} = \frac{\frac{\tau_{B^+}}{\tau_{B^0}} \frac{f_{+-}}{f_{00}} (N_{B^0} + N_{B^0} + N_{B_{\mathrm{fns}}}) - (N_{B^-} + N_{B^+})}{\frac{\tau_{B^+}}{\tau_{B^0}} \frac{f_{+-}}{f_{00}} (N_{\bar{B}^0} + N_{B^0} + N_{B_{\mathrm{fns}}}) + (N_{B^-} + N_{B^+})},$$

$$A_{CP}^{\mathrm{C}} = \frac{N_{B^-} - N_{B^+}}{N_{B^-} + N_{B^+}}, \qquad \text{Chargd A}_{\mathrm{CP}}$$

$$A_{CP}^{\mathrm{N}} = \frac{N_{B^0} - N_{B^0}}{N_{B^0} + N_{B^0}}, \qquad \text{Neutral A}_{\mathrm{CP}}$$

$$A_{CP}^{\mathrm{tot}} = \frac{(N_{B^-} + N_{B^0}) - (N_{B^+} + N_{B^0})}{(N_{B^-} + N_{D^0}) + (N_{B^+} + N_{B^0})}, \qquad \text{Combined A}_{\mathrm{CP}}$$

Mode ID	Final State	Mode ID	Final State
1	$K^+\pi^-$	20	$K_S^0 \pi^+ \pi^0 \pi^0$
2	$K_S^0\pi^+$	21	$K^{+}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
3	$K^{+}\pi^{0}$	22*	$K_S^0 \pi^+ \pi^- \pi^0 \pi^0$
4*	$K_{S}^{0}\pi^{0}$	23	$K^+\eta$
5	$K^{+}\pi^{+}\pi^{-}$	24*	$K_S^0 \eta$
6*	$K_S^0 \pi^+ \pi^-$	25	$K^+\eta\pi^-$
7	$K^{+}\pi^{-}\pi^{0}$	26	$K_S^0 \eta \pi^+$
8	$K_S^0 \pi^+ \pi^0$	27	$K^+\eta\pi^0$
9	$K^{+}\pi^{+}\pi^{-}\pi^{-}$	28*	$K_S^0 \eta \pi^0$
10	$K_S^0 \pi^+ \pi^+ \pi^-$	29	$K^+\eta\pi^+\pi^-$
11	$K^{+}\pi^{+}\pi^{-}\pi^{0}$	30*	$K_S^0 \eta \pi^+ \pi^-$
12*	$K_S^0 \pi^+ \pi^- \pi^0$	31	$K^+\eta\pi^-\pi^0$
13	$K^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	32	$K_S^0 \eta \pi^+ \pi^0$
14*	$K_S^0 \pi^+ \pi^+ \pi^- \pi^-$	33	$K^+K^+K^-$
15	$K^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	34*	$K^{+}K^{-}K_{S}^{0}$
16	$K_S^0 \pi^+ \pi^+ \pi^- \pi^0$	35	$K^{+}K^{+}K^{-}\pi^{-}$
17	$K^{+}\pi^{0}\pi^{0}$	36	$K^{+}K^{-}K_{S}^{0}\pi^{+}$
18*	$K_S^0 \pi^0 \pi^0$	37	$K^+K^+K^-\pi^0$
19	$K^{+}\pi^{-}\pi^{0}\pi^{0}$	38*	$K^+K^-K_S^0\pi^0$

Fit Results

More than 10000 events are reconstructed

 Mode
 N_S
 $B^ 3235 \pm 82$
 B^+ 3105 ± 83
 \bar{B}^0 3165 ± 78
 B^0 3116 ± 78
 B_{fns} 984 ± 42

	On-i	resoi	nance	data
--	------	-------	-------	------

Off-resonance data

Results

Preliminary

$$\Delta_{0-} = (+1.70 \pm 1.39 \pm 0.87 \pm 1.15)\%,$$

 $\Delta A_{CP} = (+1.26 \pm 2.40 \pm 0.67)\%,$

- The result for Δ_{0-} is consistent with zero
 - Can be used to reduce the theory uncertainty for $BF(B \rightarrow X_{SY})$
 - The resolved photon contributions to the BF is less than 1.9% at 2σ (1.3% at 1σ) in magnitude

$$\frac{\Delta \mathcal{B}}{\mathcal{B}} \simeq -\frac{(1 \pm 0.3)}{3} \Delta_{0-} = (-0.57 \pm 0.46 \pm 0.29 \pm 0.38 \pm 0.17)\%$$

- The result for ΔA_{CP} is consistent with zero
 - Constrains NP models
 - Strong limit on $Im(C_8/C_7) \rightarrow next page$
- Both results are most precise to date.

Constraint on $Im(C_8/C_7)$ and a NP model

• Our result excludes positive region of $Im(C_8/C_7)$ better than Babar with a factor of 3.

 $-0.34 < \text{Im}(C_8/C_7) < 0.58 \text{ for } \tilde{\Lambda}_{78} = 89 \text{ MeV}$

- Exclude parameter space in SUSY.
 - Gluino mediated EWP which explains ε'/ε from CPV trilinear couplings

M. Endo, T. Goto, T. Kitahara, S. Mishima, D. Ueda and K. Yamamoto, JHEP 04 (2018) 019.

Summary

- First evidence for Isospin Violation in B \rightarrow K* γ
 - All the measurements are most precise to date.
- Time Dependent CP Violation in B \rightarrow K_s $\eta\gamma$
 - Consistent with the SM
- Measurement of Δ_{0-} and ΔA_{CP} in B \rightarrow $X_s \gamma$ with sum-of-exclusive technique
 - The result of Δ_{0-} consistent with null thus can be used to improve the prediction of the BF.
 - Most stringent limit on ΔA_{CP} and Im(C_8/C_7)
- All the measurements are most precise to date, and to be improved at already started Belle II experiment with substantial data.

Acknowledgements

 A. I. is supported by the Japan Society for the Promotion of Science (JSPS) Grant No. 16H03968.

backup

Systematic Uncertainty for B \rightarrow Xs γ

- The largest uncertainty for Δ_{0-} is due to f_{+-}/f_{00} which can be reduced at both Belle and Belle II
- Dominant uncertainties for ΔA_{CP} are due to peaking background from π^0 , and charged particle detection asymmetry.

Source	Δ_{0-}	ΔA_{CP}	$A_{CP}^{\rm C}$	A_{CP}^{N}	$A_{CP}^{ m tot}$	\bar{A}_{CP}
tracking	± 0.02	_	_	_	< 0.01	_
K/π ID	± 0.04	_	_	_	< 0.01	_
π^0/η recon.	± 0.01	_	_	_	< 0.01	_
K_S^0 recon	+0.01	_	_	_	< 0.01	_
detection asym.	_	± 0.39	± 0.11	± 0.29	± 0.05	± 0.10
ΔE selection	+0.03	_	_	_	< 0.01	_
f_{+-}/f_{00}	± 1.15	_	_	_	_	_
lifetime ratio	± 0.19	_	_	_	_	_
fragmentation	± 0.58	_	_	_	± 0.01	_
K^* - X_s transition	± 0.12	_	_	_	< 0.01	_
missing fraction	< 0.01	_	_	_	< 0.01	_
background A_{CP}	_	± 0.05	± 0.03	± 0.04	± 0.02	± 0.03
background Δ_{0-}	± 0.01	_	_	_	< 0.01	_
fixed parameters	$+0.60 \\ -0.47$	$+0.53 \\ -0.50$	$+0.27 \\ -0.25$	$+0.28 \\ -0.29$	$+0.09 \\ -0.08$	$+0.08 \\ -0.06$
fitter bias	± 0.08	± 0.11	± 0.02	± 0.09	± 0.02	± 0.03
MC stat.	± 0.03	_	_	_	< 0.01	_
total	$+1.44 \\ -1.39$	$+0.67 \\ -0.64$	$+0.29 \\ -0.27$	$+0.41 \\ -0.42$	$+0.12 \\ -0.10$	$+0.14 \\ -0.12$

Results on $A_{CP}(B \rightarrow X_s \gamma)$ and Correlation

All the results are most precise to date

preliminary

$$A_{CP}^{C} = (+2.16 \pm 1.72 \pm 0.29)\%,$$

 $A_{CP}^{N} = (+0.90 \pm 1.67 \pm 0.42)\%,$
 $A_{CP}^{\text{tot}} = (+1.71 \pm 1.26 \pm 0.12)\%,$
 $\bar{A}_{CP} = (+1.53 \pm 1.20 \pm 0.14)\%,$

	Δ_{0-}	ΔA_{CP}	$A_{CP}^{\rm C}$	$A_{CP}^{ m N}$	$A_{CP}^{ m tot}$	\bar{A}_{CP}
Δ_{0-}	1.00	0.06	0.06	-0.04	0.01	0.01
ΔA_{CP}	0.06	1.00	0.72	-0.71	0.26	0.01
A_{CP}^{C}	0.06	0.72	1.00	-0.03	0.87	-0.70
$A_{CP}^{ m N}$	-0.04	-0.71	-0.03	1.00	0.47	0.69
$A_{CP}^{ m tot}$	0.01	0.26	0.87	0.47	1.00	0.95
\bar{A}_{CP}	0.01	0.01	-0.70	0.69	0.95	1.00

$B \rightarrow K^* \gamma$

- Cleanest exclusive b→sγ decay.
 - BF $\sim 4 \times 10^{-5}$
 - About 12% of inclusive B→Xsγ rate
 - Prediction of branching fraction is limited by an uncertainty of tensor form factor at $q^2=0$; $T_1(0)$.
 - The exclusive BF is not so sensitive to new physics but is a probe for $T_1(0)$ or QCD.
 - Precise measurements of BF(B \rightarrow X_s γ) constrain new physics in $|C_7|$ so much.

Ratios with B \rightarrow K* γ

- By taking a ratio of decay widths (or BF), a dominant uncertainty due to T₁(0) cancels out thus sensitive to new physics
 - Isospin Violation; Δ_{0+}
 - New physics in annihilation diagrams

$$\Delta_{0+} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)}$$

- CP Violation; A_{CP}
 - New phases
 - Sensitive to Im(C₇)
 - Insensitive to chirality flipped operator C₇'

$$A_{CP} = \frac{\Gamma(\bar{B} \to \bar{K}^* \gamma) - \Gamma(B \to K^* \gamma)}{\Gamma(\bar{B} \to \bar{K}^* \gamma) + \Gamma(B \to K^* \gamma)}$$

Altmannshofer, Straub EPJC 75, 82 (2015) Paul, Straub JHEP 1704 (2017) 027

Reconstruction of B \rightarrow K* γ

Four subdecay modes

- K*⁰→K_s⁰π⁰, K⁺π⁻
- − $K^{*+} \rightarrow K^{+} \pi^{0}$, $K_{s}^{0} \pi^{-}$
- Flavor eigenstates except for $K_s^0 \pi^0$
 - Self-flavor tagged modes

B selection

- −0.2 GeV < ΔE < 0.1 GeV
- 5.20 GeV < Mbc < 5.29 GeV
- M_{K π} < 2.0GeV : to check feed down from higher resonances

Background suppression

- BB : π^0/η veto with M_{γγ}
- Continuum : NeuroBays with event shape variables
 - To maximize the FoM

Best candidate selection

- Number of candidates per event is 1.16 with MC.
- Randomly selected in order not to bias other variables

K* selection

 $- |M_{\kappa\pi} - M_{\kappa*}| < 75 MeV$

Signal
Continuum $B \rightarrow Xs\gamma$ Rare B other than $B \rightarrow Xs\gamma$

Extraction of BF, A_{CP} , Δ_{0+} and ΔA_{CP}

- Unbinned maximum likelihood fit to M_{bc} distributions.
 - Signal w/o π^0 (w/ π^0) : Gaussian (Crystal Ball)
 - Cross-feed : ARGUS + Bifurcated Gaussian (the yield is proportional to signal yield)
 - Continuum background : ARGUS
 - BB background : ARGUS + Bifurcated Gaussian
- To extract the BF and A_{CP} for each subdecay, separate fit is performed.
- To measure the combined BFs, Δ_{0+} , A_{CP} , and ΔA_{CP} , simultaneous fit is performed to seven M_{bc} distributions with the likelihood.
 - With input parameters of efficiencies, number of BB pairs, lifetime ratio and production of B+B- and B0B0 in Y(4S) decays

$$\mathcal{L}(M_{\mathrm{bc}}|\mathcal{B}^{N}, \mathcal{B}^{C}, A_{CP}^{N}, A_{CP}^{C})$$

$$= \Pi \mathcal{L}^{K_{S}^{0}\pi^{0}}(M_{\mathrm{bc}}|\mathcal{B}^{N})$$

$$\times \Pi \mathcal{L}^{K^{-}\pi^{+}}(M_{\mathrm{bc}}|\mathcal{B}^{N}, A_{CP}^{N}) \times \Pi \mathcal{L}^{K^{+}\pi^{-}}(M_{\mathrm{bc}}|\mathcal{B}^{N}, A_{CP}^{N})$$

$$\times \Pi \mathcal{L}^{K^{-}\pi^{0}}(M_{\mathrm{bc}}|\mathcal{B}^{C}, A_{CP}^{C}) \times \Pi \mathcal{L}^{K^{+}\pi^{0}}(M_{\mathrm{bc}}|\mathcal{B}^{C}, A_{CP}^{C})$$

$$\times \Pi \mathcal{L}^{K_{S}^{0}\pi^{-}}(M_{\mathrm{bc}}|\mathcal{B}^{C}, A_{CP}^{C}) \times \Pi \mathcal{L}^{K_{S}^{0}\pi^{+}}(M_{\mathrm{bc}}|\mathcal{B}^{C}, A_{CP}^{C}),$$

$BF(B \rightarrow K^*\gamma)$

- New Belle results consistent with previous measurements
 - But slightly (~10%) smaller than
 Babar results which dominated the
 WA.
- Also consistent with theoretical predictions by Bharucha, Starub and Zwicky.
 - Belle results a bit closer to theory than before
- Most precise measurements
 - Can be used to constrain the T₁(0)
 - Already systematic dominant
 - Photon detection and PID

$BF(B^0 \rightarrow K^{*0}\gamma)/(B_s \rightarrow \phi\gamma)$

Calculation

- Used Belle measurement of BF(B_s $\rightarrow \phi \gamma$) with 121fb⁻¹

D. Dutta et al. PRD 91 01101 (2015)

$$\mathcal{B}(B_s^0 \to \phi \gamma) = (3.6 \pm 0.5(\text{stat.}) \pm 0.3(\text{syst.}) \pm 0.6(f_s)) \times 10^{-5}$$

 Only used K*⁰ → K⁺π⁻ mode to cancel out common systematics

$$\mathcal{B}(B^0 \to K^{*0}\gamma) = (3.95 \pm 0.07 \pm 0.14) \times 10^{-5}$$

Result

$$\frac{\mathcal{B}(B^0 \to K^{*0}\gamma)}{\mathcal{B}(B_s^0 \to \phi\gamma)} = 1.10 \pm 0.16 \pm 0.09 \pm 0.18$$

- The uncertainty dominated by uncertainties of $BF(B_s \rightarrow \phi \gamma)$
 - The third uncertainty due to f_s , which is a fraction of $Bs^{(*)}Bs^{(*)}$ production from Y(5S)
- Belle result Consistent with LHCb, and theoretical predictions by Ali, Pecjak and Greub and Lyon and Zwicky
 - Can be used to constrain $T_1^{B \to K^*}(0)/T_1^{Bs \to \phi}(0)$

A_{CP}

- New Belle results are most precise to date
- Consistent with zero and previous measurements by Babar and LHCb
 - Also PDG
- Consistent with theoretical predictions within the SM by Matsumori et al and Paul and Straub
 - Strong constraints to Im(C₇)

Altmannshofer, Straub EPJC 75, 82 (2015) Paul, Straub 1608.02556

