Precision measurement of the form factors of the semileptonic decay $K^{\pm} \rightarrow \pi^0 l^{\pm} \nu$ (KI3)

R.Piandani

University and INFN of Perugia

on behalf of the NA48/2 collaboration

• ICHEP 2018 – Seul (Suth Korea), 4-11 July 2018

Outline:

- The NA48/2 Beam and Detectors
- The theoretical motivations
- The signal selections and residual background
- Results
- Conclusions

The NA48/2 Beam

3

The NA48/2 Detectors

Magnetic spectrometer (4 DCHs): 4 views: redundancy \Rightarrow efficiency $\sigma(p)/p = 1.0\% + 0.044\% p [GeV/c]$

Charged hodoscope (scintillators):

Fast trigger and precise time measurement (~200 ps on single track)

Liquid Krypton E.M. Calorimeter (LKr): 10 m3 (~22 t), 1.25 m (27 X0), 13212 cells granularity: 2x2 cm2, quasi-homogeneous $\sigma(E)/E = 3.2\%/\sqrt{E} + 9\%/E + 0.42\%$ [E in GeV]

Then hadronic calorimeter, large angle vetos and muon counter (scintillators)

Min Bias Trigger:

Coincidence of two Hodoscope hits × ELKr > 10 GeV

3 days in 2004

Physics motivation

Kl3 decays are described by **two form factors** $f_{\pm}(t)$, and the **matrix element** can be written as:

$$M = \frac{G_F}{2} V_{us} (f_+(t)(P_K + P_\pi)^\mu \bar{u}_l \gamma_\mu (1 + \gamma_5) u_\nu + f_-(t) m_l \bar{u}_l (1 + \gamma_5) u_\nu)$$

 $t = q^2$ is the square of the four-momentum transfer to the lepton neutrino system $f_{\pm}(t)$ are the **vector form factors**

 $f_0(t)$ the **scalar form factor is** given by:

$$f_0(t) = f_+(t) + \frac{t}{(m_K^2 - m_\pi^2)} f_-(t)$$

 $f_{-}(t)$ can only be measured in Kµ3 decays because of $m_e << m_K$

 $f_{+}(0)$ cannot be measured directly, therefore the form factors are normalised to $f_{+}(0)$:

$$\bar{f}_{+}(t) = \frac{f_{+}(t)}{f_{+}(0)}$$
 $\bar{f}_{0}(t) = \frac{f_{0}(t)}{f_{+}(0)}$

Form Factor Parametrizations

Pole parametrization:

Assumes the exchange of vector and scalar resonances K^* with spin-parity $1^-/0^+$ and masses m_V/m_S , $f_+(t)$ can be described by $K^*(892)$, for $f_0(t)$ no obvious dominance is seen:

$$\bar{f}_{+,0}(t) = \frac{m_{V,S}^2}{m_{V,S}^2 - t}$$

Linear and quadratic parametrization:

$$ar{f}_{+,0}(t) = \left[1 + \lambda_{+,0} rac{t}{m_\pi^2}
ight]$$
 Linear

$$ar{f}_{+,0}(t)=\left[1+\lambda_{+,0}'rac{t}{m_\pi^2}+rac{1}{2}\lambda_{+,0}''\left(rac{t}{m_\pi^2}
ight)^2
ight]$$
 Quadratic

No sensitivity to λ_0^n

Dispersive parametrization: (B. Bernard, M. Oertel, E. Passemar, J. Stern, Phys.Rev.D80(2009) 034034)

$$\bar{f}_{+}(t) = exp((\Lambda_{+} + H(t)t/m_{\pi}^{2}))$$

$$\bar{f}_{0}(t) = exp((ln[C] - G(t))t/(m_{K}^{2} - m_{\pi}^{2}))$$

Event selection (1)

K =

Common event selection:

1 good $\pi^0 \rightarrow \gamma \gamma$

2 isolated γ in LKr (D > 20 cm and D_track > 15 cm)

 $E(\pi^0) > 15 \text{ GeV}$

Specific event selection:

$K^{\pm}e3$

1 charged track with p>5 GeV and E/p>0.9

 p_{T}^{v} (beam axis)>0.03 GeV/c

$$(p_T^v)^2 = (E^v/c)^2 - (p_T^v)^2 > 0.0014 GeV^2/c^2$$

$K^{\pm}\mu 3$

1 charged track with p>10 GeV and E/p<0.9

An associated signal in the MUV

Cuts to remove $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} (\pi^{\pm} \rightarrow \mu^{\pm} \nu)$

Cuts to remove $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ ($\pi^{\pm} \rightarrow \mu^{\pm} \nu$ and missing π^{0})

7

Event selection (2)

Events selected:

2.91·10⁶ K[±]μ3

4.28·10⁶ K[±]e3

 $O(10^{-4} - 10^{-3})$ background contamination

Decay	Br, %	Bkg (e),10 ⁻³	Bkg (μ), 10^{-3}
$K^{\pm} \rightarrow \pi^{\pm}(\pi^{0} \rightarrow 2\gamma)$	20.66	0.270	0.264
$K^{\pm} \rightarrow \pi^{\pm}2(\pi^{0} \rightarrow 2\gamma)$	1.761	0.286	1.833

R

Measured Dalitz plots and fit areas

$$\rho(E_l^*, E_\pi^*) = \frac{d^2N(E_l^*, E_\pi^*)}{dE_\mu^* dE_\pi^*} \propto Af_+^2(t) + Bf_+(t)(f_0 - f_+) \frac{m_K^2 - m_\pi^2}{t} + C\left[(f_0 - f_+) \frac{m_K^2 - m_\pi^2}{t}) \right]^2$$

(5x5 MeV cells)

Fit procedure

The MC events, generated with a known set of FF (λ gen), are weighted using the following formula

$$W(\bar{L}) = W_r \frac{\rho(\bar{L}; E_l^*, E_{\pi}^*)}{\rho(\lambda_{gen}; E_l^*, E_{\pi}^*)}$$

Where ρ is the Dalitz plot density as a function of the leptons and pion energy in the Kaon rest frame. Wr is different from 1 only for Ke3 in order to take in to account the radiative corrections (V. Cirigliano at all., Eur. Phys. J. C23 (2002) 121–133)

The best value of FF parameters L is found minimizing the χ^2 estimator

$$\chi^2 = \sum_{celli} \frac{(n_i^{data} - N \cdot n_i^{MC})^2}{\sigma_{n_i^{data}}^2 + N^2 \sigma_{n_i^{MC}}^2}$$

Where n_i^{data} is the population of cell i of reconstructed Dalitz plot of data after background subtraction, n_i^{MC} is the population of the weighted MC Dalitz plot

Dalitz plot projections ○ Data + MC fit result (quad.) + (Data-Bkg)/MC E (GeV) E_(GeV) Slightly significant K slope, within the radiative correction precision. Radiative effect uncertanty is included in the E (GeV) E_(GeV) systematic error Small deviations in the bkg-affected region E (GeV) Ë (GeV) The bkg-related uncertanties are included in the systematic error E (GeV) E_π(GeV)

Form factors results (1)

Ke3 sample

	Quadratic parameterization (in units of 10 ⁻³)		Pole parameterization (in MeV)	Dispersive parameterization (in units of 10 ⁻³)	
	λ',	λ'',	M_v	$\Lambda_{\scriptscriptstyle{+}}$	
Central value	23.52	1.60	896.8	22.54	
Stat. error	0.78	0.30	3.4	0.20	
Syst. error	1.29	0.39	7.6	0.62	
Total error	1.51	0.49	8.3	0.65	
χ^2/ndf	609.4	4/687	609.3/688	609.1/688	
Correlation coefficients	-0.9	927	-	-	

Form factors results (2)

Kµ3 sample

	Quadratic parameterization (in units of 10 ⁻³)			Pole parameterization (in MeV)		Dispersive parameterization (in units of 10 ⁻³)	
	λ'_+	λ''+	λ'0	M_v	M _s	$\Lambda_{\scriptscriptstyle{+}}$	In[C]
Central value	23.32	2.14	14.33	879.1	1196.4	23.55	186.68
Stat. error	3.08	1.06	1.11	8.1	18.1	0.50	5.12
Syst. error	3.50	0.96	1.25	13.5	28.8	0.97	9.23
Total error	4.67	1.43	1.67	15.7	34.0	1.10	10.55
χ²/ndf	391.2/384		388.0/385		385.8/385		

Coorrelation

	λ",	λ^{0}		M _S	In[C]
λ' +	-0.969	0.851	M_{V}	0.320	
λ"+		-0.810	$\Lambda_{\scriptscriptstyle +}$		0.408

Form factors results (3)

Combined K₁₃ sample for the preliminary results

	Quadratic parameterization (in units of 10 ⁻³)		Pole parameterization (in MeV)		Dispersive parameterization (in units of 10 ⁻³)		
	λ'_+	λ''_+	λ'0	M_v	M _s	Λ_{+}	In[C]
Central value	23.35	1.73	14.90	894.3	1185.5	22.67	189.12
Stat. error	0.75	0.29	0.55	3.2	16.6	0.18	4.91
Syst. error	1.23	0.41	0.80	5.4	35.3	0.55	11.09
Total error	1.44	0.50	0.97	6.3	35.5	0.58	12.13
χ²/ndf	1004.6/1073		1001.1/1074		998.3/1074		

Coorrelations

	λ"+	λ^{0}		M_S	In[C]
λ' +	-0.954	0.076	M_{\vee}	-0.278	
λ",		-0.035	$\Lambda_{\scriptscriptstyle{+}}$		-0.035

Form factors results (4)

Comparison with other experiments

Summary

~4.3 M Ke3 and ~2.9 M Kµ3 reconstructed with 2004 NA48/2 data taking

Competitive results for Kµ3 and smallest error for Ke3

The combined results are the most precise