

An experiment to measure BR($K_L \rightarrow \pi^0 v \bar{v}$) at the CERN SPS

International Conference on High-Energy Physics Seoul, 7 July 2018

Matthew Moulson – INFN Frascati For the KLEVER project

$K \rightarrow \pi v \overline{v}$ in the Standard Model

FCNC processes dominated by Z-penguin and box amplitudes:

Extremely rare decays with rates very precisely predicted in SM:

- Hard GIM mechanism + pattern of CKM suppression $(V_{ts}^* V_{td})$
- No long-distance contributions from amplitudes with intermediate photons
- Hadronic matrix element obtained from $BR(K_{e3})$ via isospin rotation

	SM predicted rates Buras et al, JHEP 1511*	Experimental status
$K^+ \rightarrow \pi^+ v \overline{v}$	BR = (8.4 ± 1.0) × 10 ⁻¹¹	BR = (17.3 $^{+11.5}_{-10.5}$) × 10 ⁻¹¹ Stopped <i>K</i> ⁺ , 7 events observed BNL 787/949, PRD79 (2009)
$K_L \rightarrow \pi^0 v \overline{v}$	BR = (3.4 ± 0.6) × 10 ⁻¹¹	BR < 2600 × 10⁻¹¹ 90%CL KEK 391a, PRD81 (2010)

* Tree-level determinations of CKM matrix elements

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 \nu \nu$) at the CERN SPS – M. Moulson – ICHEP 2018 – Seoul – 7 July 2018 2

$K \rightarrow \pi v \overline{v}$ and the unitarity triangle

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (NA62)

3

Dominant uncertainties for SM BRs are from CKM matrix elements

$$BR(K^{+} \to \pi^{+} v \bar{v}) = (8.39 \pm 0.30) \times 10^{-11} \cdot \left[\frac{|V_{cb}|}{0.0407}\right]^{2.8} \cdot \left[\frac{\gamma}{73.2^{\circ}}\right]^{0.74}$$
Buras et al.,

$$JHEP \ 1511$$

$$BR(K_{L} \to \pi^{0} v \bar{v}) = (3.36 \pm 0.05) \times 10^{-11} \cdot \left[\frac{|V_{ub}|}{3.88 \times 10^{-3}}\right]^{2} \cdot \left[\frac{|V_{cb}|}{0.0407}\right]^{2} \cdot \left[\frac{\sin \gamma}{\sin 73.2^{\circ}}\right]^{2}$$

Intrinsic theory uncertainties ~ few percent

Measuring both K^+ and K_L BRs can determine the CKM unitarity triangle independently from *B* inputs

1.5

excluded area has CL >

 $\overline{\eta}$

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 \nu \nu$) at the CERN SPS – M. Moulson – ICHEP 2018 – Seoul – 7 July 2018

$K \rightarrow \pi v \overline{v}$ and new physics

New physics affects BRs differently for K^+ and K_L channels Measurements of both can discriminate among NP scenarios

- Models with CKM-like flavor structure
 Models with MFV
- Models with new flavorviolating interactions in which either LH or RH couplings dominate
 - –Z/Z' models with pure LH/RH couplings
 - -Littlest Higgs with *T* parity
- Models without above constraints

 Randall-Sundrum

The NA62 experiment at the SPS

NA6Z

NA62 status and timeline

2016	Commissioning + 1 st physics run
	Preliminary result presented in March 2018
	Expected 0.267 signal, 0.15 \pm 0.09 background
	1 event observed
	BR($K^+ \rightarrow \pi^+ \nu \nu$) < 14 × 10 ⁻¹⁰ (95%CL)
2017	Physics run (23 weeks)
	20x more data than 2016 result
	Data processing in progress
2018	Physics run (31 weeks, started 9 April)
2019-2020	LS2 (LHC Long Shutdown 2)

By end of 2018 NA62 will reach a sensitivity of 20 SM $K^+ \rightarrow \pi^+ vv$ events

- Input to the European Strategy for Particle Physics
- Solid extrapolation to ultimate sensitivity of NA62 achievable after LS2

Fixed target runs at the SPS

2021 (Run 3): Intention to continue data taking with NA62

- Measure BR($K^+ \rightarrow \pi^+ \nu \nu$) with ultimate sensitivity
- · Search for hidden particles in beam-dump mode

2026 (Run 4): Turn focus to measurement of BR($K_L \rightarrow \pi^0 vv$) \rightarrow K_LEVER

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 \nu \nu$) at the CERN SPS – M. Moulson – ICHEP 2018 – Seoul – 7 July 2018 7

$K_L \rightarrow \pi^0 v \bar{v}$: Experimental issues

Essential signature: 2γ with unbalanced p_{\perp} + nothing else!

All other K_L decays have $\ge 2 \text{ extra } \gamma \text{s or } \ge 2 \text{ tracks to veto}$ Exception: $K_L \rightarrow \gamma \gamma$, but not a big problem since $p_\perp = 0$

K_L momentum generally is not known $M(\gamma\gamma) = m(\pi^0)$ is the only sharp kinematic constraint

Generally used to reconstruct vertex position

Main backgrounds:

veto $\gamma_1 d$ $R_1 \gamma_2$ R_2 R_2

$$m_{\pi^0}^2 = 2E_1 E_2 \left(1 - \cos\theta\right)$$

$$R_1 \approx R_2 \equiv R = \frac{d\sqrt{E_1 E_2}}{m_{\pi^0}}$$

Mode	BR	Methods to suppress/reject
$K_L ightarrow \pi^0 \pi^0$	8.64 × 10 ⁻⁴	γ vetoes, π^0 vertex, p_{\perp}
$K_L \rightarrow \pi^0 \pi^0 \pi^0$	19.52%	γ vetoes, π^0 vertex, p_\perp
$K_L \rightarrow \pi e v(\gamma)$	40.55%	Charged particle vetoes, π ID, γ vetoes
$\Lambda \to \pi^0 n$		Beamline length, p_{\perp}
$n + gas \rightarrow X\pi^0$		High vacuum decay region

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 \nu \nu$) at the CERN SPS – M. Moulson – ICHEP 2018 – Seoul – 7 July 2018 8

A $K_L \rightarrow \pi^0 v \bar{v}$ experiment at the SPS

400-GeV SPS proton beam (2 × 10¹³ pot/16.8 s) incident on Be target at z = 0 m

K_L Experiment for VEry Rare events

- High-energy experiment: Complementary to KOTO
- Photons from K_L decays boosted forward
 - Makes photon vetoing easier veto coverage only out to 100 mrad
- Roughly same vacuum tank layout and fiducial volume as NA62

A $K_L \rightarrow \pi^0 v \bar{v}$ experiment at the SPS

400-GeV SPS proton beam (2 × 10¹³ pot/16.8 s) incident on Be target at z = 0 m

Beam and intensity requirements

K_L and Λ fluxes in beam FLUKA simulation

- 400 GeV p on 400 mm Be target
- Production at θ = 8.0 mrad:
 - As much K_L production as possible
 - Low ratio of n/K_L in beam ~ 3
 - Reduce *A* production and soften momentum spectrum
- Solid angle $\Delta \theta = 0.4$ mrad
 - Large $\Delta \theta = \text{high } K_L$ flux
 - Maintain tight beam collimation to improves p_⊥ constraint for background rejection

60 $K_L \rightarrow \pi^0 v v$ events

• 2.1 × 10⁻⁵ K_L in beam/pot

- Probability for decay inside FV $\sim 2\%$
- Acceptance for $K_L \rightarrow \pi^0 v v$ decays occurring in FV ~ 10%

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 \nu \nu$) at the CERN SPS – M. Moulson – ICHEP 2018 – Seoul – 7 July 2018 11

Neutral beamline layout

- Compact primary beam sweeping
- Photon absorber in dump collimator
- 4 collimation stages to minimize neutron halo, including beam scattered from absorber
- Active final collimator in LYSO

Neutral beam simulation

FLUKA simulation of beamline

32-mm tungsten coverter ($9X_0$)

Detail of target and dump collimator:

13

Shashlyk calorimeter with spy tiles

Main electromagnetic calorimeter (MEC):

Fine-sampling shashlyk based on PANDA forward EM calorimeter produced at Protvino

0.275 mm Pb + 1.5 mm scintillator

PANDA/KOPIO prototypes:

- σ_E/√E ~ 3% /√E (GeV)
- $\sigma_t \sim 72 \text{ ps} / \sqrt{E} \text{ (GeV)}$
- $\sigma_x \sim 13 \text{ mm} / \sqrt{E} \text{ (GeV)}$

New for KLEVER: Longitudinal shower information from spy tiles

- PID information: identification of μ , π , n interactions
- Shower depth information: improved time resolution for EM showers

1st prototype assembled and tested at Protvino OKA beamline, April 2018

Vetoes for upstream $K_L \rightarrow \pi^0 \pi^0$

Upstream veto (UV):

- 10 cm < *r* < 1 m:
- Shashlyk calorimeter modules à la PANDA/KOPIO, like MEC

Active final collimator:

- 4.2 < *r* < 10 cm
- LYSO collar counter
- 80 cm long
- Internal collimating surfaces
- Intercepts halo particles from scattering on upstream collimators or γ absorber Rejects π^0 s from inelastic interactions
- Rejects $K_L \rightarrow \pi^0 \pi^0$ in transit through collimator

Large-angle photon vetoes

25 new large-angle photon veto stations (LAV)

- 5 sizes, sensitive radius 0.85 to 1.5 m, at intervals of 4 to 5 m
- Hermetic coverage out to 100 mrad
 Need good detection efficiency at low energy (1 ε ~ 0.5% at 20 MeV)
- Baseline technology: Lead/scintillator tile with WLS readout Based on design of CKM VVS Assumed efficiency based on E949 and CKM VVS experience

Small-angle photon veto

Small-angle photon calorimeter system (SAC)

- Rejects high-energy γ s from $K_L \rightarrow \pi^0 \pi^0$ escaping through beam hole
- Must be insensitive as possible to 430 MHz of beam neutrons

Beam comp.	Rate (MHz)	Req. 1 – ε
γ, E > 5 GeV	50	10 ⁻²
γ, E > 30 GeV	2.5	10 ⁻⁴
n	430	-

Baseline solution:

• Tungsten/silicon-pad sampling calorimeter with crystal metal absorber

Efficient y conversion with crystals

Coherent effects in crystals enhance pair-conversion probability

Use coherent effects to obtain a converter with large effective λ_{int}/X_0 :

- **1. Beam photon converter in dump collimator** Effective at converting beam γ s while relatively transparent to K_L
- 2. Absorber material for small-angle calorimeter (SAC) Must be insensitive as possible to high flux of beam neutrons while efficiently vetoing high-energy γ s from K_L decays

Beam test of $\gamma \rightarrow e^+e^-$ in crystals

AXIAL group is collaborating with KLEVER on test beam measurement of pair-production enhancement in crystals

Tagged photon test beam setup:

- 3. Measure pair conversion vs. E_{γ} , θ_{inc} for 5 < E_{γ} < 150 GeV
- 4. Obtain information to assist MC development for beam photon converter and SAC

- Nearly all detectors and DAQ system available for use from AXIAL
- 1 week of H2 beam in August 2018

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 vv$) at the CERN SPS – M. Moulson – ICHEP 2018 – Seoul – 7 July 2018 19

Charged particle rejection

Most dangerous mode: K_{e3}

- BR = 40%
- Easy to mistake $e \leftrightarrow \gamma$ in LKr
- Acceptance $\pi^0 v v / K_{e3} = 30$
- → Need 10⁻⁹ suppression!

Charged particle veto (CPV)

• Scintillating tiles, just upstream of MEC

Calorimetric ID for μ and π

- Shower profile in MEC
- Re-use NA62 hadronic calorimeters MUV1/2 (not shown), downstream of MEC

Mispaired $K_L \rightarrow \pi^0 \pi^0$ events

Distance from FV to LKr significantly helps for rejection of "odd" background from $K_L \rightarrow \pi^0 \pi^0$

- Most $K_L \rightarrow \pi^0 \pi^0$ decays with lost photons occur just upstream of the MEC
- " π^0 s" from mispaired γ s are mainly reconstructed upstream of true position

Preshower detector (PSD) is particularly effective against downstream decays

Preshower background rejection

Preshower vertex z_{pre} vs. LKr vertex z_{rec}

Even pairs (2 γ from same π^0)

 $z_{\rm rec}$ reconstructed by imposing $M(\gamma\gamma) = m_{\pi 0}$

• $K_L \rightarrow \pi^0 \pi^0$, 1 year equivalent

• No cuts on FV, p_{\perp} , r_{\min}

Odd pairs (2 γ s from different π^0)

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 \nu \nu$) at the CERN SPS – M. Moulson – ICHEP 2018 – Seoul – 7 July 2018 22

Basic signal selection

No hits in UV, AFC, LAV, SAC + fiducial volume (FV) and p_{\perp} cuts

K_lever

Additional background rejection

Cluster radius r_{MEC} > 35 cm – Require z_{PSD} in FV if PSD hit available

Status and timeline

Project timeline – target dates:

2017-2018	 Project consolidation and proposal Participation in Physics Beyond Colliders Beam test of crystal pair enhancement Input to European Strategy for Particle Physics Expression of Interest to CERN SPSC
2019-2021	Detector R&D
2021-2025	 Detector construction Possible K12 beam test if compatible with NA62
2024-2026	Installation during LS3
2026-	Data taking beginning Run 4

Most groups participating in NA62 have expressed interest in KLEVER We are actively seeking new collaborators!

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 vv$) at the CERN SPS – M. Moulson – ICHEP 2018 – Seoul – 7 July 2018 25

Summary and outlook

Flavor will play an important role in identifying new physics, even if new physics is found at the LHC

 $K \rightarrow \pi v v$ is a uniquely sensitive indirect probe for high mass scales

Need precision measurements of both K⁺ and K_L decays

NA62 will improve on current knowledge of BR($K^+ \rightarrow \pi^+ vv$) in the short term, ultimately reaching ~100 event sensitivity

KOTO will reach SM sensitivity to BR($K_L \rightarrow \pi^0 vv$) by 2021

Preliminary design studies indicate that an experiment to measure BR($K_L \rightarrow \pi^0 vv$) can be performed at the SPS in Run 4 (2026-2029)

- Many issues still to be addressed!
- Expected sensitivity: ~ 60 SM events with S/B ~ 1

KLEVER is actively seeking new collaborators

- Expression of Interest to SPSC and input to ESPP in preparation
- Small contributions now can have a big impact!

Additional information

International Conference on High-Energy Physics Seoul, 7 July 2018

Matthew Moulson – INFN Frascati For the KLEVER project

$K \rightarrow \pi v \bar{v}$ and other kaon observables **K**

Do constraints from Re ε'/ε , ε_K , Δm_K , $K_L \rightarrow \mu\mu$ limit size of effects on $K \rightarrow \pi \nu \nu$ BRs?

Model	Effect	Refs
Vector-like quarks	K_L suppressed, K^+ possibly enhanced	Bobeth et al. '16
Leptoquarks	Large effects for both K_L , K^+ : possibly ruled out?	Bobeth, Buras '17
Simplified Z	K_L suppressed 30%, K^+ enhanced up to 2x	Endo et al. '17
SUSY	K^+ and K_L enhanced 10-20% for $\Lambda_{SUSY} \sim 3 \text{ TeV}$	Kitahara et al. '16

Endo et al. PLB771 (2017)

General Z scenario with modified couplings, $\Lambda = 1$ TeV

 Because of interference between SM and NP amplitudes, if all constraints satisfied including "discrepancy" in Re ε'/ε:

 $BR(K_L \rightarrow \pi^0 vv) \sim 0.5 SM BR$

- Particularly in simplified scenarios: LH, RH, LRS
- With moderate tuning (cancellation of interference terms to 10%), large values for BR($K \rightarrow \pi v v$) are possible

$K \rightarrow \pi v \overline{v}$ and other flavor observables **K**

New ideas relating $K \rightarrow \pi v v$ to *B*-sector LFU anomalies:

 $R_{K}, P_{5}': \mu/e \text{ LFU in } B \to K\ell\ell, B \to K^{*}\ell\ell$ $R_{D(*)}: \tau/(\mu, e) \text{ LFU in } B \to D^{(*)}\ell\nu$

Coherent explanation from NP coupled predominantly to 3rd generation LH quarks and leptons, e.g., mediated by vector leptoquark

- Di Luzio et al. PRD 96 (2017)
- Buttazzo et al. JHEP 1711

EFT studies suggest large effect for $K \rightarrow \pi v v$

• Bordone et al. EPJC77 (2017)

 $R_0 = \frac{1}{\Lambda^2} \frac{1}{\sqrt{2}G_F}$

$$\mathcal{B}(B \to D^{(*)}\tau\bar{\nu}) = \mathcal{B}(B \to D^{(*)}\tau\bar{\nu})_{\mathrm{SM}} \left| 1 + R_0 \left(1 - \theta_q e^{-i\phi_q} \right) \right|^2$$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = 2\mathcal{B}(K_L \to \pi^0 \nu_e \bar{\nu}_e)_{\rm SM} + \mathcal{B}(K_L \to \pi^0 \nu_\tau \bar{\nu}_\tau)_{\rm SM} \left| 1 - \frac{R_0 \,\theta_q^2 (1 - c_{13})}{(\alpha/\pi)(X_{\rm t}/s_{\rm w}^2)} \right|^2$$

High-intensity proton beam issues

10¹⁹ pot/yr × 5 years \rightarrow 2 × 10¹³ ppp/16.8s = 6× increase relative to NA62

Feasibility/cost study a primary goal of our involvement in Physics Beyond Colliders

Preliminary analysis of critical issues by Secondary Beams & Areas group

Issue	Approach
Proton availability	SHiP supercycle = 4×10^{19} pot/yr with 1×10^{13} ppp for users KLEVER requires 1×10^{19} pot/yr (25% of SHiP)
Extraction losses	Good results on ZS losses and spill quality from SPS Losses & Activation WG (SLAWG) workshop, 9-11 November 2017: https://indico.cern.ch/event/639766/
Beam loss on T4	Vertical by-pass to increase transmission to T10
Equipment protection	Interlock to stop SPS extraction during P0Survey reaction time
Ventilation in ECN3	Preliminary measurements indicate good air containment Comprehensive ventilation system upgrade not needed?
ECN3 beam dump	Significantly improved for NA62 Need to better understand current safety margin
Background fluxes	Starting simulations for prompt background above target 8 mrad vertical targeting angle should help to mitigate

Large-angle photon vetoes

Need good detection efficiency at low energy $(1 - \varepsilon \sim 0.5\% \text{ at } 20 \text{ MeV})$

Baseline technology: CKM VVS Scintillating tile with WLS readout

Good efficiency assumptions based on E949 and CKM VVS experience

E949 barrel veto efficiencies Same construction as CKM

Tests for NA62 at Frascati BTF

Tests at JLAB for CKM: • $1 - \varepsilon \sim 3 \times 10^{-6}$ at 1200 MeV

Charged particle veto

 $K_L \rightarrow \pi ev$ can emulate signal when both π and e deposit energy in MEC

- Fake π^0 vertexes from πe all reconstructed downstream of true decay
 - $-\pi^+$ deposits only a fraction of its energy
- K_{e3} decays with " π^{0} " reconstructed in FV have $z_{\rm rec}$ < 200 m
 - All within the acceptance of the CPV

Baseline CPV design

Square scintillator tiles, 5-mm thick, supported on carbon fiber membrane

• 2 planes \rightarrow 3% X_0

Tile geometry: 4x4 cm² or 8x8 cm²

- Smaller tiles near beam line •
- Cracks staggered between planes •
- 4 chamfered corners (45°) for direct SiPM coupling

Charged particle rejection

 $K_L \rightarrow \pi ev$ can emulate signal when both π and e deposit energy in LKr

Use cluster RMS in LKr to identify and reject π interactions

• Geant4 confirmed by preliminary analysis of $\pi\pi^0$ events in NA62 data:

$$\varepsilon_{\gamma} = 0.95$$

 $\varepsilon_{\pi} = 0.05$

If LKr replaced by shashlyk, longitudinal shower profile information also available

Ratio of hadronic/total energy effective to identify π showers

• Preliminary results based on Geant4:

$$\varepsilon_{\gamma} = 0.99$$

 $\varepsilon_{\pi} = 0.07$

Study of HAC (MUV1/2) response in NA62 data in progress

 Parameterization of response for inclusion in fast simulation

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 \nu \nu$) at the CERN SPS – M. Moulson – ICHEP 2018 – Seoul – 7 July 2018 33

Concept for preshower detector

Advantages

- Redundancy for rejection of $K_L \rightarrow \pi^0 \pi^0$
- Partial event reconstruction for calibration channels
- Sensitivity for exotics searches e.g. $K_L \rightarrow \pi^0 X, X \rightarrow \gamma \gamma$ with displaced vertex

Issues

- Implications of extra material on MEC γ efficiency
 - Place material as close as possible to MEC, so energy from preshowering γs cannot escape
- Enough to establish partial redundancy if 50% of pairs have at least 1 conversion:
 → 0.5X₀ converter
- Angular resolution for γ s dominated by multiple scattering in converter if tracking planes have $\sigma_x < 100 \ \mu m$
 - σ_{θ} = 2 mrad from MS
 - $\sigma_z \sim 10 \text{ m and } \sigma_{m\gamma\gamma} < 25 \text{ MeV}$
- Multi-pattern gas detectors to track conversion products?
 - Micromegas, µ-RWELL?
- Data condensation in front end: only active elements read out

Limits on $K_L \rightarrow \pi^0 X$ from $K_L \rightarrow \pi^0 v \bar{v}$

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 \nu \nu$) at the CERN SPS – M. Moulson – ICHEP 2018 – Seoul – 7 July 2018 35

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 v v$) at the CERN SPS – M. Moulson – ICHEP 2018 – Seoul – 7 July 2018 3