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Machine learning applied in all aspects of 
Experiments

CMS CHEP talks
• “Fast Boosted Decision Tree inference on 

FPGAs for triggering at the LHC”
• “Convolutional Neural Network for Track Seed 

Filtering at the CMS HLT”
• “End-to-end Deep Learning Applications for 

Event Classification in CMS”
ICHEP:
• “Muon System Monitoring with ML”
9 month old CMS overview DS@CERN seminar

L1, DQM, HLT, reconstruction, analysis, interpretation

ALICE, recent overview talk

Resources:
• BDTs for lambdaC

• Low mass di-electron

Will not provide extensive overview, but focus on a topic

IML: LPCC ML 
working group page
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Deep learning exponential growth 

• The driving factor of the ai “boom” is deep learning 
and big data

• I will focus on deep learning success stories that are 
implemented in Alice and CMS software:

• Jet tagging in Alice and CMS
• Data quality monitoring/certification in CMS
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Jet tagging: which parton was that?

Each line and box represents many measurements
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wikipedia

Key features:
• Displaced tracks from longer lifetimes 

of  heavy flavor jets
• Secondary vertex
• Eventually leptons in jets from W* in b 

→ W*c or c → W*s
• Slightly wider jets
• …

• Typically CMS jets have up to 50 particles with 
detailed information and secondary vertices ~1000 
features

Most commonly used tagger: b-jet tagging
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Traditional physicist ML

Remove 
unnecessary 
particles:
Which?

Design most 
discriminating 
particle-variables:  
How? Optical?

Run shallow ML:
Best performance

1000 → 200 200 → 30 30 → 1

The traditional dimensionality reduction includes very 
difficult questions. Some danger of loosing valuable 
information. 
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Deep learning

Best performance

1000 → 1

• Deep learning can deal with large input dimensions and 
reduces dimensionality directly for best performance

• The gain by deep learning depends on how much 
information was lost in traditional dimension reduction 
chain
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CMS vs. state-of-the-art deep learning

Training 
samples

Feat/sample Model 
parameter

Samples
per 
parameter

DeepJet 50 M jets 700 0.25 M 100:1
Images 1 M images 0.5 M 50 M 1:50

• For tagging we have more samples than model parameters, which is 
not the norm in deep learning

• Regularization comparably simple in such cases, to be kept in mind 
when building networks
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Designing deep neural networks (DeepJet) 

Build variables
per particle Summarize 

particle list

Final 
optimization

• Physics insights needed to design neural network architecture
• Particle and vertex based DNN as b-tagger for CMS



DPs-2017-013

Blue: naive DNN (700 inputs)
Green: CMS tagger (~65 human made inputs)
Red: Physics inspired DNN (700 inputs)

Particle and vertex based DNN performs best
9

Impact of DeepJet/DeepFlavour architecture
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50%
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DeepJet results

Very significant gain at high pT

• Main loss of information was identified to be in the 
particle pre-selection

• Gain not yet confirmed in data, validation ongoing
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Fat jets

Key features of  tops:
• Masses W, t, W polarization
• PU rejection
• 3 “prong”
• b-subjet and 50% with c-subjet

b
c

s

• Not obvious if these key features factorize or need to 
be addressed simultaneous.

• Potential gain by deep learning
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Large cone jets for boosted objects

CMS-DP-17-049 

• DNN=DeepJet (using all particles + vertices) with and without particle 
displacement information

• Modest gain w.r.t. state of  the art features + BDT without particle 
displacement

• Factor 4 in background rejection for full information and deep learning



DeepJet multi-class classification

Label Sub-label

b
bb

Leptonic b

b

c c

uds uds

gluon gluon

Label Sublabel

Higgs
H (bb)

H (cc)

H (VV*→qqqq)

Top

top (bcq)

top (bqq)

top (bc)

top (bq)

W
W (cq)

W (qq)

Z
Z (bb)

Z (cc)

Z (qq)

QCD

QCD (bb)

QCD (cc)

QCD (b)

QCD (c)

QCD (others)

fat jetsslim jets

• DeepJet classifies many categories 
simultaneously

• Red classes currently in data 
validation
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Alice flavor tagging
arxiv.org:1709.08497

Deep learning 
architecture based on 
particles and vertices 
starting by convolutions 
on particles

CMS and Alice developed independently related ideas
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Alice flavor tagging
arxiv.org:1709.08497

• Significant gain w.r.t. simple cut based approach
• b-tagging performance comparable to CMS
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Data Quality Monitoring

• Spot problems during data taking to react
• Certify data quality offline
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Online data quality monitoring in CMS (DQM)

Muon drift tube hit occupancy

“good”

“bad”

Use machine learning to learn previous experts ratings

More in: Junghwan Goh talk 16:45 
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Results for single layers (DQM)

• A convolutional neural network architecture 
achieves an AUC of 0.998

• Very good automatization of expert
• Implemented real online DQM for test purposes
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Semi supervised ML for DQM

Use machine learning to catch any deviation from “good 
quality” data

• Auto-encoder: The optimal dimension reduction depends on the ground 
truth. Only “good quality” data is used for training.

• A large difference between input and output indicates high probability 
that the data was not “good quality”
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Per chamber more problem can be spotted

Low voltage layer good layer

Mean Squared Error of Auto-encoder

Auto-encoder indicated problems for low voltage
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Black box ⟷ Interpretability

The actual analytical function (O(million) parameters) 
is difficult to represent for deep learning, but input 
output relation can be studies to interpret the “black 
box”
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Interpretability tools a “booming” research area 

• Gradient or simple cuts are often used in physics to study the network 
behaviors

• Increasing number of  more sophisticated tools on the market and 
implemented into standard libraries
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Summary

• Deep learning on the rise in HEP
• Deep learning successfully applied to tagging and 

DQM in Alice and CMS
• Currently these deep learned methods are 

validated in real data
• Deep learning promises gains. Potential gains 

critically depend on how good the previous 
methods were and how much data is available

• Still many opportunities for deep learning
• Join and follow Inter-experimental LHC ML 

meetings!
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Performance of the DeepJet multi classification algorithm, the recurrent and the convolutional 
approach, demonstrating the probability for gluon jets to be misidentified as a light quark (uds) jet, 
as a function of the efficiency to correctly identify light quark jets. The curves are obtained on 
simulated QCD events with p̂T between 600 and 800 GeV and using jets with a pT above 500 GeV. 
The absolute performance in this figure serves as an illustration since the light quark jet 
identification efficiency depends on the pT and η distribution of the jets, the event topology, the 
flavour composition of the sample, and the generator used. All curves are obtained using Pythia8. 
Jets that originate from a gluon splitting to cc or bb quarks are not considered gluon jets.
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DPS-2017-027

We filter on generator level only light quarks and gluons that did 
NOT split to heavy flavor.

→ Generic DeepJet and custom quark vs. gluon DNN (2D convolutions) gave 
very similar results!

→ Data is multi-class, without heavy flavor removed DeepJet was clearly best
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Comparisons of DNNs


