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Overview

Machine Learning (ML) is ubiquitous in modern HEP

Historically used for final analysis selections

Increasingly finding its way into lower-level tasks

Modern HEP is also starting to use more recent ML developments

Traditionally: Boosted Decision Trees (BDTs), Neural Networks (NNs)

More recently: “deep learning” explosion (DNNs, RNNs, CNNs, ...)

I will focus on ML usage outside of final analysis selections

At the end, I will give a few examples ML used in key analyses
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Object reconstruction, calibration, and similar

Object reconstruction, calibration, and similar

Object identification (tagging)

Simulation

Automation

ML usage in key results
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Object reconstruction, calibration, and similar

Track reconstruction
Left: TrackML challenge

Right: PUB-2017-011

ATLAS and LHCb track reconstruction both investigating ML

ATLAS: prepare for extreme expected pileup conditions

Recent TrackML challenge to speed up track reconstruction

Discussed more in the next talk

LHCb: Efficiently suppress fake tracks within the trigger

Significant gains in fake track rejection reduce combinatorics

Key piece enabling use of offline track algorithms in trigger
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https://www.kaggle.com/c/trackml-particle-identification
https://cds.cern.ch/record/2255039
https://indico.cern.ch/event/686555/timetable/?view=standard#82-trackml-a-tracking-machine


Object reconstruction, calibration, and similar

Object calibration (regressions)
Left: CONF-2017-029

Right: Ennis (2017)

ATLAS hadronic τ calibration is now ML-based

Boosted Regression Tree (BRT) significantly improves pτT resolution

BRT adds track and decay mode info, removes most of pT dependence

Jet mass calibration can also be improved with ML

Comparing a normal calibration vs neural network regression

NN calibration has superior mass resolution =⇒ many benefits
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-029/
http://wrap.warwick.ac.uk/100735/


Object reconstruction, calibration, and similar

Differences between data and MC
Left: Rogozhnikov (2016)

Right: PAPER-2018-020

Data and MC can often be told apart based on modelling differences

Train a BDT to reweight MC to remove the differences!

After this is done, large majority of discrimination power removed

Used in many LHCb publications to fix modelling differences

Example of the BDT reweighter applied to D0 → π+π−µ+µ−
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http://iopscience.iop.org/article/10.1088/1742-6596/762/1/012036
https://arxiv.org/abs/1806.10793


Object identification (tagging)
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Object identification (tagging)

Taggers with high-level inputs
Left: PUB-2017-013

Right: CONF-2017-064

Long history of using BDTs for b-tagging in ATLAS

Done using “high-level” variables = derived quantities (not raw tracks)

Latest iteration continues to improve identification capabilities

Both BDTs and DNNs tested for top-jet tagging

Similar performance for BDTs and DNNs using high-level features

Consistent gain of factor of ∼ 2 with respect to simple taggers

200 400 600 800 1000 1200 1400

=
7

7
%

b
ε

L
ig

h
t­

fl
a

v
o

u
r 

je
t 

re
je

c
ti
o

n
 f

o
r 

1

10

210 MV2 ­ 2016 configuration
MV2 ­ 2017 configuration
MV2Mu ­ 2017 configuration
MV2MuRnn ­ 2017 configuration

ATLAS Simulation Preliminary

=13 TeV , Z’s

 [GeV]
T

Jet p

200 400 600 800 1000 1200 1400

2
0
1
7
/2

0
1
6

0.5

1

1.5

2

2.5

3

 [GeV]
T

Truth jet p

400 600 800 1000 1200 1400 1600 1800 2000

)
b
k
g

∈
B

a
c
k
g

ro
u

n
d

 r
e

je
c
ti
o

n
 (

1
 /

 

0

10

20

30

40

50

60

ATLAS Simulation Preliminary

 = 13 TeVs

| < 2.0truth
η R=1.0 jets, |tanti­k

 = 0.2)
sub

 = 0.05 R
cut

Trimmed (f

 = 80%sig∈Top tagging at 

DNN top

BDT top

2­var optimised tagger

Shower Deconstruction
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-013/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-064/


Object identification (tagging)

Tagging with lower-level inputs
Left: PUB-2017-003

Right: PUB-2017-017

“Deep learning” promises gains by using low-level inputs

Use of tracks as input to RNN for impact parameter b-tagging

Recurrent NN considers up to 15 tracks for each jet (for training speed)

∼50% gain using same variables vs likelihood, more with extra variables

Use of jet images and CNNs for quark/gluon tagging

Convolutional NN uses tracks and calorimeter towers as inputs

Moderate gain over likelihood combination for high quark efficiency
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-003/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-017/


Object identification (tagging)

Multi-class tagging
Left: EXOT-2017-14

Right: EXOT-2017-14

Sometimes there are multiple similar objects to differentiate

Boosted W/Z, Higgs, and top jets have non-negligible overlap

Multi-class DNN trained on a mix of low-level and high-level variables

First stage: discriminate vs QCD for each signal type independently

Second step: likelihoods of discriminants for signal ambiguity resolution

)V(P

2− 1− 0 1

F
ra

c
ti
o

n
 /

 0
.1

0

0.05

0.1

0.15

0.2
­boson jetV

Higgs­boson jet

Top­quark jet

Background jet

ATLAS    Simulation Preliminary

 = 13 TeVs

vRC jets

| < 2.5η|

 < 2000 GeV
T

150 < p

m > 40 GeV

 )H

DNN
D / V

DNN
D( 

10
log

1.5− 1− 0.5− 0 0.5

F
ra

c
ti
o

n
 /

 0
.1

0

0.05

0.1

0.15

0.2

0.25

­boson jetV

Higgs­boson jet

VLQ DNN

&Higgs­taggedV

ATLAS    Simulation Preliminary

 = 13 TeVs

vRC jets

| < 2.5η|

 < 2000 GeV
T

150 < p

m > 40 GeV
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2017-14/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2017-14/


Object identification (tagging)

Decorrelated taggers
Left: Lucio (2018)

Right: Shimmin et al (2017)

ML can remove correlations / flatten distributions [methods: 1, 2, 3]

Uniform BDT (uBoost) flattens vs 4 variables at once

Provides unbiased background determination for different channels

Adversarial NN (ANN) puts two NNs against each other

Removes sculpting of the jet mass distribution when rejecting QCD
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https://indico.cern.ch/event/668017/timetable/?view=standard#18-particle-identification-at
https://arxiv.org/abs/1703.03507
https://doi.org/10.1088/1748-0221/8/12/P12013
https://doi.org/10.1088/1748-0221/10/03/T03002
https://arxiv.org/abs/1611.01046


Object identification (tagging)

Compressing for the trigger
Left: Dendek (2018)

Right: Likhomanenko et al (2015)

BDTs and NNs are typically “fast” to evaluate, but “fast” is relative

In the trigger, every bit of speed is needed

Bonsai BDTs binarize the nodes for faster evaluation

Left: some degradation in performance from this simplification

Right: loss in performance is minimal in real trigger use-case
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https://indico.cern.ch/event/681549/contributions/2959633/
https://dx.doi.org/10.1088/1742-6596/664/8/082025


Simulation

Object reconstruction, calibration, and similar

Object identification (tagging)
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Simulation

Speeding up simulations
Left: de Oliveira et al (2017)

Right: Vallecorsa (2017)

Rigorous calorimeter simulation is very computationally expensive

Typically a “fast simulation” exists for where lower precision is needed

ML is a promising means of extending/improving fast simulation

Idea: calorimeter shower is a 3D image, use ML to generate images

Left: jet mass for W vs QCD in independent studies

Right: electron 3D longitudinal depth for Geant4 vs ML in GeantV

Two dedicated talks later on LHCb and ATLAS ML-based simulation

Also a poster by ATLAS on this topic
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Steven Schramm (Université de Genève) ML at CERN: ATLAS, LHCb, and more July 5, 2018 14 / 20

https://doi.org/10.1007/s41781-017-0004-6
https://indico.cern.ch/event/567550/papers/2656673/files/5841-SofiaVallecorsa_Plenary.pdf
https://indico.cern.ch/event/686555/timetable/?view=standard#572-fast-calorimeter-simulatio
https://indico.cern.ch/event/686555/timetable/?view=standard#633-new-approaches-using-machi
https://indico.cern.ch/event/686555/timetable/?view=standard#960-fast-calorimeter-simulatio


Automation

Object reconstruction, calibration, and similar

Object identification (tagging)

Simulation

Automation

ML usage in key results
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Automation

Job scheduling and data quality
Left: Rauschmayr et al (2014)

Right: Adinolfi et al (2017)

Investigated ML for job submission and resource demand

ML (linear regression) does better job than likelihood average

Not used in production as dominant factor is MC or data

ML being used for automated data quality monitoring

Running in production but not yet used for decisions

Not enough bad runs yet to validate that it is working as intended
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https://cds.cern.ch/record/1985236
https://doi.org/10.1088/1742-6596/898/9/092027


ML usage in key results

Object reconstruction, calibration, and similar

Object identification (tagging)

Simulation

Automation

ML usage in key results
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ML usage in key results

ATLAS results
Left: HIGG-2013-32

Right: HIGG-2018-13

BDTs and NNs are used throughout many high-profile ATLAS results

Two NNs were used in the Higgs boson discovery paper (not shown)

BDTs played a key role in the first evidence for H → ττ

BDT increases significance by ∼ 1σ compared to cut-based

BDTs are also key to the recent ttH observation

Two separate BDTs are used, with multiple channels and categories
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Steven Schramm (Université de Genève) ML at CERN: ATLAS, LHCb, and more July 5, 2018 18 / 20

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-32/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-13/


ML usage in key results

LHCb results
Left: PAPER-2012-043

Right: PAPER-2015-029

The first evidence for B0
s → µ+µ− made use of BDTs

Two-stage BDT discriminant for high signal efficiency

The first observation of pentaquarks also used BDTs

Separate Λ0
b signal from backgrounds

These are only two of many examples of LHCb results using ML

BDTs are frequently used and 2/3 of results use the bonsai BDT trigger
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https://doi.org/10.1103/PhysRevLett.110.021801
https://doi.org/10.1103/PhysRevLett.115.072001


Summary

Summary

ML usage is increasing for both ATLAS and LHCb

Historically used to improve sensitivity in flagship analyses

Increasingly used for other lower-level tasks

Reconstruction, tagging, simulation, automation, and more

The set of ML techniques used is also growing

BDTs and simple NNs are still quite common

However, deep learning is increasingly used in many forms

DNNs, CNNs, RNNs, GANs, ANNs, VAEs, ...

This trend is likely to continue as datasets grow

The HL-LHC in particular will deliver a huge dataset for ML analysis

LPCC Inter-experimental Machine Learning working group (IML) is

open to all who are interested in discussing the usage of ML in HEP

>650 people on the mailing list, >300 registrants at the 2018 workshop
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http://iml.web.cern.ch/
mailto:lhc-machinelearning-wg@cern.ch
https://indico.cern.ch/event/668017/


Backup

Backup Material
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Backup

Multi-class tagging, step 1
Left: EXOT-2017-14

Right: EXOT-2017-14
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2017-14/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2017-14/


Backup

Multi-class tagging, step 2
Left: EXOT-2017-14

Right: EXOT-2017-14
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2017-14/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2017-14/
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