Searches for Heavy Neutrinos at CMS

John Almond (Seoul National University) On behalf of CMS Collaboration 7th July, Neutrino Physics session

39th International Conference on High Energy Physics, July 4-11

Why look for heavy neutrinos?

- First observed by Super K 1998 and SNO 2001 Collaborations
- Most recently by the OPERA collaboration (10.1103/PhysRevLett.120.211801)
- ... but, very small: In line with observations in cosmology and meson decays -> $m_{\nu} \lesssim O eV$
- If a right handed (RH) neutrino is postulated:
 - $m_{
 m _{
 u}}$ can have a Dirac mass (accommodated in SM via EWSB).

 $\lambda_{\nu} \lesssim 10^{-12}$ vs $\lambda_{\rm e} \sim 10^{-6}$ \rightarrow possible but not very satisfying!

- OR can add a Majorana mass term (m_N), small neutrino masses naturally explained by the **Seesaw** mechanism: $m_{\nu} \simeq m_{Dirac}^2/m_N$
- Three types of seesaw models, this talk will discuss CMS Type-I and Type-III searches.
 - expect new heavy Majorana neutrino(s) than can be probed at LHC.
 - not only address neutrino masses, but can also provide DM candidates, help leptogenesis,...

Model	New Particles	Search Signature	Latest Results		
Tural	Weak-singlet	Same-sign dilepton (SS2I)	CMS-EXO-17-028 <u>https://arxiv.org/abs/1806.10905</u>	13 TeV, 2016 data	New!
іуре-і	fermion (N)	Trilepton	CMS-EXO-17-012	13 TeV, 2016 data	
			10.1103/Phys.Rev.Lett.120.221801		
Type-III	Weak-triplet_	Multilentons	CMS-EXO-17-006	13 TeV 2016 data	
1990 m	fermion $\Sigma^{0,\pm}$		10.1103/PhysRevLett.119.221802		

John Almond (Seoul National University) Se

CMS CMU pour production of the second second

Backgrounds in Seesaw searches: SS2I/3/4 lepton events

- All CMS seesaw searches probe events with either same-sign 2lepton (SS2I), 3 or 4+ charged leptons.
- These are split into three categories of backgrounds:

2

Type-I seesaw: Searches at CMS

Decay Kinematics

Low p_T #2

Low p_T #1,2

- Search for a neutrino (N) in **vMSM**, N is produced via mixing with SM neutrinos.
 - Consider s- and t-channel [1] (new to 2016 analysis) production modes .
 - Production cross-section and N lifetime depend on mass & mixing $|V_{\ell N}|^2$

Analyses needs to consider change in signal characteristics for different mass regimes (see table).

Dominant Mode

s-channel

s-channel

s-channel

low-

mass

- Analysis split into two regions
 - $m_{\rm N} \leq m_{\rm W}$: low-mass
 - $m_{\rm N} > m_{\rm W}$: high-mass

Signal characteristics

Compressed p_T spectra

 $M(1+2+3+4) \sim m_{yy}$

ol	hn Almond (Seou	ul National I	University)	Search for Heavy	Neutrinos at CMS	ICHEP 2	2018 3
	$m_{ m N}\gtrsim 600$	Off-shell	On-shell	Boosted #3,4	Merged W decay produce	t-channel	∫mass
	$m_{\rm W} < m_{ m N} \lesssim 600$	Off-shell	On-shell	Low p_T #1, high p_T #2	$M(2{+}3{+}4) \sim \mathcal{M}_{\mathrm{W}}$	s-channel	high-

Soft & displaced #2,3,4 Long-lived N, displaced decay products

W_N

Off-shell

Off-shell

Off-shell

Mass region (GeV)

 $20 < m_{\rm N} < m_{\rm W}$

 $m_{\rm N} < 20$

 $m_{\rm N} \lessapprox m_{\rm W}$

Wpropagator

On-shell

On-shell

On-shell

CMS-EXO-17-012

CMS-EXO-17-028

[1] 10.1103/Phys.Rev.Lett.112.081801

10.1103/Phys.Rev.Lett.120.221801

Type-I seesaw: Trilepton channels

John Almond (Seoul National University)

Type-I seesaw: Trilepton channel Search regions ($|V_{\mu N}|^2$)

>> 33 orthogonal search bins (8 low-mass, 25 high-mass) per lepton channel depending on:

*all units are Ge $ V_{\mu N} ^2$	v	Nossr=0 eµµ	NossF=1 μμμ, eμμ	Search regions additional cuts;
<mark>Low-mass</mark> m _N < m _W	Leading p⊤ < 55	$M_{3\ell} < 80$ $p_{T}^{miss} < 75$	\bigotimes	W^+ W^{\mp}
High-mass m _N > m _W	Leading p _T > 55	I I I	$\begin{split} \mathbf{M}_{2\ell \mathrm{OS}}^{\mathrm{min}} &> 5\\ \mathbf{M}_{\ell\ell}(\mathbf{M}_{\ell\ell\ell}) - \mathbf{M}_{\mathrm{Z}} > 15 \end{split}$	Νννν

N_{OSSF} pairs, and 4 discriminant variables

John Almond (Seoul National University)

Type-I seesaw: Trilepton channel Search regions ($|V_{\mu N}|^2$)

John Almond (Seoul National University)

Type-I seesaw: Trilepton results (IV_{IN}I²)

- No evidence of significant excess beyond SM background.
- Limits set on using asymptotic CLs criteria.
 - Simultaneous fit to all 33 signal regions are performed.
- Less sensitivity when N becomes displaced --> harder to select leptons.
- First results in this channel at the LHC, and first in any channel below 40 GeV.

CMS-EXO-17-012

10.1103/Phys.Rev.Lett.120.221801

CMS-EXO-17-028

Type-I seesaw: SS Dilepton channel https://arxiv.org/abs/1806.10905

- Targets a N in the mass range 20-1600 GeV.
 - Mass of N < 20 GeV, no acceptance for reconstructing 2 leptons and a jet.

Signal Topology

- 2 same-sign leptons (effective way to suppress prompt backgrounds)
- 2 AK4 jets
- Uses dilepton triggers, cannot use low p_T requirements as trilepton searches :ee, $\mu\mu$, e_T ($p_T^{\text{leading}} \ge 20$ $p_T^{\text{trailing}} \ge 15$)
- Use AK4 and AK8 jetT : AK4 $p_T \ge 20$, AK8 $p_T \ge 200$ (min p_T cuts available; no low p_T jet trigger available)

	Low-mass	$m_{\rm N} < m_{\rm W}$
et	High-mass	$m_{\rm N} > m_{\rm W}$

- Can reconstruct N when correct jets are selected.
- Can have OS2I (N=Majorana) signal events, but more bkg.

Type-I seesaw: SS Dilepton channel SRs

Recover events when soft jets from W are not selected (mainly due to jet p_T). Low-Mass SR2: SS2I + 1 AK4 jet

Recover events when jets from W are merged. Use wide jet+jet substructure. High-Mass SR2: SS2I + 1 AK8 jet

Signal Region	N masses	Jet kinematics	SS2I	N AK4	N _{AK8}
Low-mass SR1	20 < m < m	2 soft resolved jets	1	≥ 2	0
Low-mass SR2	20 < 111 _N < 111 _W	2 soft jets (1 jet lost)	1	= 1	0
High-mass SR1	$m_{\rm W} < m_{\rm N} < 1600$	2 resolved jets	1	≥ 2	0
High-mass SR2	$m_W < m_N < 1000$	2 merged jets (1 "fat" jet)	\checkmark	≥ 0	≥ 1

CN

Type-I seesaw: SS Dilepton channel SR2

Recover events when soft jets from W are not selected (mainly due to jet p_T). Low-Mass SR2: SS2I + 1 AK4 jet

High-Mass SR2: SS2I + 1 AK8 jet

Signal Region Jet kinematics SS₂I Nak4 NAK8 N masses ≥ 2 Low-mass SR1 2 soft resolved jets 0 $20 < m_N < m_W$ Low-mass SR2 2 soft jets (1 jet lost) = 1 $\mathbf{0}$ High-mass SR1 2 resolved jets ≥ 2 0 **_** $m_W < m_N < 1600$ High-mass SR2 2 merged jets (1 "fat" jet) ≥ 0 ≥ 1 1

John Almond (Seoul National University)

Type-I seesaw: SS2I channel Search Regions

Require baseline selection

Region	$p_{\rm T}^{\rm miss}$	$(p_{\rm T}^{\rm miss})^2/S_{\rm T}$	$m(\ell^{\pm}\ell^{\pm}W_{jet})$	$m(W_{jet})$	$p_{\mathrm{T}}^{\mathrm{j}}$
	(Gev)	(Gev)	(GeV)	(Gev)	(Gev)
Low-mass SR1+SR2	$<\!\!80$		<300		>20
High-mass SR1		<15		30-150	>25
Llich mass CD2		<15		40 120	> 200
righ-mass onz		$\overline{10}$		10 100	/20 0

Low-mass $m_{\rm N} < m_{\rm W}$

- Large irreducible background with ℓ_{misid} .
- m(ll+jets) should peak at m_W.

Optimize signal per mass hypothesis*:

- lepton p_T
- m(ll+jets), m(l+jets), m(ll)

> Total: 7 masses* 2 (SRs) (per flavour channel)

m _N	$p_{\mathrm{T}}^{\ell_1}$	$p_{\mathrm{T}}^{\ell_2}$	$m(\ell^{\pm}\ell^{\pm}W_{jet})$	$n(\ell_1 W_{jet})$	$m(\ell_2 W_{jet})$	$m(\ell^{\pm}\ell^{\pm})$	Total bkgd.	N _{obs}	DY $A\epsilon$	
(GeV)	(GeV)	(GeV)	(GeV)	(GeV)	(GeV)	(GeV)			(%)	
ee channel SR1										
20	25–70	60	<190	<160	<160	10–60	48.9 ± 9.5	45	0.12 ± 0.02	
30	25–70	60	<190	<160	<160	10–60	48.9 ± 9.5	45	0.13 ± 0.02	
40	25–70	60	<190	<160	<160	10–60	48.9 ± 9.5	45	0.21 ± 0.03	
50	25–70	60	<190	<160	<160	10–60	48.9 ± 9.5	45	0.24 ± 0.03	
60	25–70	60	<190	<160	<160	10–60	48.9 ± 9.5	45	0.18 ± 0.02	
70	25–70	60	<190	<160	<160	10–75	64 ± 12	58	0.10 ± 0.01	
75	25–70	60	<190	<160	<160	10-100	68 ± 12	67	0.13 ± 0.02	
ee channel SR2										
20	25–70	60	<100	<70	<70	10–60	50.3 ± 8.5	55	0.26 ± 0.03	
30	25–70	60	<100	<70	<70	10–60	50.3 ± 8.5	55	0.30 ± 0.04	*Table for ee channel:
40	25–70	60	<100	<70	<70	10–60	50.3 ± 8.5	55	0.35 ± 0.04	See backup B5-B6 for
50	25–70	60	<100	<70	<70	10–60	50.3 ± 8.5	55	0.32 ± 0.03	See backup b3-b0 101
60	25–70	60	<100	<70	<70	10–60	50.3 ± 8.5	55	0.24 ± 0.03	full optimisation tables
70	25–70	60	<100	<70	<70	10–75	65 ± 10	70	0.06 ± 0.01	•
75	25–70	60	<100	<70	<70	10-80	67 ± 10	70	0.11 ± 0.02	
1 1004									-	

John Almond (Seoul National University)

Search for Heavy Neutrinos at CMS

for optimisation tables Type-I seesaw: SS2I channel Search Regions

*See backup B5-B6

John Almond (Seoul National University)

> 800

>800

> 800

>800

>800

>800

>800

>800

800

900

1000

1100

1200

1300

1400

1500

>110

>110

>110

>110

>110

>110

>110

>110

_

_

<7

<7

 $<\!\!7$

 $<\!\!7$

<7

 $<\!\!7$

<7

<7

0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.3

2

2

2

2

 6.0 ± 0.4

 5.4 ± 0.4

 4.6 ± 0.3

 4.1 ± 0.3

 3.6 ± 0.2

 3.2 ± 0.2

 2.7 ± 0.2

 2.5 ± 0.2

 5.4 ± 0.3

 5.0 ± 0.3

 4.2 ± 0.3

 3.8 ± 0.3

 3.4 ± 0.3

 3.0 ± 0.2

 2.7 ± 0.2

 2.3 ± 0.2

370-890

370-1225

370-1230

370-1245

370-1690

370-1890

370-1940

370-2220

Search for Heavy Neutrinos at CMS

800

900

1000

1100

1200

1300

1400

1500

>140

>140

>140

>140

>140

>140

>140

>140

755-960

840-1055

900-1205

990-1250

1035-1430

1100-1595

1285-1700

1330_1800

 $<\!15$

<15

<15

<15

< 15

 $<\!15$

<15

<15

 0.4 ± 0.3

0.2

0.1

0.2

0.2

0.1

0.1

0.2

 0.3 ± 0.3

 $0.1 + 0.2 \\ - 0.1 \\ + 0.2$

0.1 + 0.2 - 0.1

0

1

1

1

1

1

 34.8 ± 3.5

 35.8 ± 3.6

 38.4 ± 3.9

 36.7 ± 3.7

 38.5 ± 4.0

 38.5 ± 4.0

 35.9 ± 3.8

 36.4 ± 3.9

 24.9 ± 2.3

 26.9 ± 2.5

 28.9 ± 2.7

 29.2 ± 2.7

 30.1 ± 2.8

 30.7 ± 3.0

 29.4 ± 2.8

 30.0 ± 2.9

a

- No significant excess above SM (largest deviation of 2.3σ local significance in SR1 $\mu\mu$ 600 GeV)
- Set upper limits combining SR1 and SR2, with cut and count using Full CLs method.
 - Significant improvement on sensitivity for high-mass compared to past SS2I searches.
 - First limits for masses above 1200 GeV.

Complimentary with EXO-17-012 (Trilepton channel)

- SS2I channel has better sensitivity than trilepton channel for high-mass:
 - BR(W->qq) > 4*BR(W->|v|)
 - Mass dependent optimisation
- Trilepton channel has best sensitivity for low-mass:
 - Lower backgrounds from misidentified leptons
 - SS2I channel needs to reconstruct 4 soft objects, and lepton $p_T^{min} < jet p_T^{min}$

Previous limits up to 500 GeV

10.1103/PhysRevLett.119.221802

CMS-EXO-17-006.

CM

Type-III seesaw: Multilepton channel

Events / 150 Ge\

Obs/Exp

10⁴

10³

10²

10

CMS

- Type-III seesaw, three new fermion triplet ($\Sigma^{0,\pm}$)
 - Pair produced via gauge interactions.
 - $\Sigma^{0,\pm}$ are **degenerate** in mass

 $\Sigma^0 \to W^{\pm} \ell^{\mp}$ $pp \to \Sigma^{0/\pm} \Sigma^{\mp} \otimes \quad \overline{\Sigma^0} \to Z/H \nu$ $\Sigma^{\pm} \to W^{\pm} \nu$ $\Sigma^{\pm} \to {\rm Z}/{\rm H}\ell^{\pm}$

- 27 channels in total - Mixing with 1, 2 & 3 generations allowed

Look for a striking multilepton signature.

- $N_v + N_{lep} = 6.$

- $L_T + p_T^{miss}$ used as main signal discriminant.
- 6 signal regions, depending on
 - N_{lep}, N_{OSSF}, M_{OSSF} on/off Z peak.
 - each with 8 bins

Major backgrounds:

- irreducible WZ and ZZ (norm. In CR)
- Reducible DY and tt + misID lepton

John Almond (Seoul National University)

Search for Heavy Neutrinos at CMS

^{iss} (GeV)

 $L_{\tau}+p^{m}$

400

200

1000

L_T+p^{miss} (GeV)

1200

800

Type-III seesaw: Multilepton channel

35.9 fb⁻¹ (13 TeV)

СŇ

John Almond (Seoul National University)

- A variety of final states are under scrutiny in the searching for heavy Majorana neutrinos in the context of Seesaw models
 - Type-I Seesaw*:
 - probed in mass range ~ 1-1600 GeV and $10^{-5} < |V_{\ell N}|^2 < 1$.
 - complementary signatures in low (trileptons) and high (dilepton+jets) masses.
 - dedicated search planned to target low-masses with displaced signatures.

* Also see other analyses (See backup B7-B8) where Seesaw is embedded in: Type-1+LR-Symmetric model: **CMS-EXO-17-011, arXiv:1803.11116**

John Almond (Seoul National University)

- A variety of final states are under scrutiny in the searching for heavy Majorana neutrinos in the context of Seesaw models
 - Type-I Seesaw*:
 - probed in mass range ~ 1-1600 GeV and $10^{-5} < |V_{\ell N}|^2 < 1$
 - complementary signatures in low (trileptons) and high (dilepton+jets) masses.
 - dedicated search planned to target low-masses with displaced signatures.

* Also see other analyses (See backup B7-B8) where Seesaw is embedded in: Type-1+LR-Symmetric model: **CMS-EXO-17-011**, arXiv:1803.11116

John Almond (Seoul National University)

- A **variety of final states** are under scrutiny in the searching for heavy Majorana neutrinos in the context of Seesaw models
 - Type-I Seesaw*:
 - Probed in mass range ~ 1-1600 GeV and 10⁻⁵ < |VeN|² < 1</p>
 - complementary signatures in low (trileptons) and high (dilepton+jets) masses.
 - Dedicated search planned **to target low-masses with displaced signatures.**
 - Type-Ill Seesaw:
 - Probed new fermion mass range ~100-1000 GeV.
 - Most stringent limits to date in flavour-demectric scenario.
 - Mixings to third generation of fermions are also probed via light-lepton channels.
 - Addition of dedicated **hadronic tau channels** is planned.

- A **variety of final states** are under scrutiny in the searching for heavy Majorana neutrinos in the context of Seesaw models
 - Type-I Seesaw*:
 - Probed in mass range ~ 1-1600 GeV
 - complementary signatures in low (tril)
 (dilepton+jets) masses.
 - Dedicated search planned **to target l**

- Type-III Seesaw:
 - Probed new fermion mass range ~10(
 - Mixings to third generation of fermi
 - Addition of dedicated **hadronic tau c**

CMS Integrated Luminosity, pp

Data included from 2010-03-30 11:22 to 2018-07-04 22:20 UTC

• More to come with the complete Run-2 dataset!

Backup

CMS Poundad months and the second sec

Backgrounds in Seesaw searches: SS2I/3/4 lepton events

- All CMS seesaw searches probe events with either same-sign 2lepton (SS2I), 3 or 4+ charged leptons.
- These are split into three categories of backgrounds:

Type-I seesaw: Trilepton channel Search regions (IV_{µN}I²)

Type-I seesaw: Trilepton channel Search regions (IV_{eN}I²)

Production modes for N at the LHC

10.1103/PhysRevD.94.053002, arXiv:1602.06957

Systematics for SS Dilepton Search

	CMS	luon Solenoid
-		Compact M

Channel / Source	ee signal [%]	ee bkgd. [%]	μμ signal [%]	μμ bkgd. [%]	eµ signal [%]	eµ bkgd. [%]
Simulation:						
SM cross section	-	12-14 (15-27)	-	13-18 (22-41)	-	12-14 (16-30)
Jet energy scale	2-5 (0-1)	2-6 (5-6)	2-8 (0-1)	3-5 (4-7)	1-6 (0-1)	1-4 (3)
Jet energy resolution	1-2 (0-0.3)	1-2 (2-6)	1-2 (0-0.3)	0-0.8 (1-3)	0.8 (0-0.3)	0-0.8 (0-3)
Jet mass scale	0-0.3 (0-0.1)	0-1 (1-3)	0-0.2 (0-0.1)	0-0.3 (0.7)	0-0.1 (0-0.1)	0-0.2 (0-5)
Jet mass resolution	0-0.4 (0-0.3)	0-1 (0-2)	0-0.1 (0-0.2)	0-0.1 (0-0.5)	0-0.4 (0-0.3)	0-0.4 (0-3)
Subjettiness	0-1 (0-8)	0-1.0 (1-7)	0-0.3 (0-8)	0-0.1 (0-8)	0-0.2 (0-8)	0-0.4 (0-8)
Event pileup	2-3(1)	2 (0-2)	0-1 (0-1)	0-1 (0-3)	0.7 (0.8)	2 (2-4)
Unclustered energy	0-0.7 (0-0.1)	1 (2–5)	0-1 (0-0.1)	0-1 (3-4)	0-0.5 (0-0.1)	0.9 (1-2)
Integrated luminosity	2.5 (2.5)	2.5 (2.5)	2.5 (2.5)	2.5 (2.5)	2.5 (2.5)	2.5 (2.5)
Lepton selection	2-4 (4)	2-4 (2-6)	3 (3-4)	3 (3-5)	2 (3)	2 (2-6)
Trigger selection	3-4 (1)	3 (3–5)	0-0.9 (0-0.4)	0-1 (0-0.8)	3 (0-0.2)	3 (2)
b tagging	0-0.8 (0-1)	0.7 (1)	0-0.5 (0-0.6)	0-1 (1-3)	0-0.7 (0-0.7)	0-1 (1-4)
Theory:						
PDF	0-1.0 (1)		1 (1)		0.9 (1)	
α _s	0-0.9 (0-0.03)	<15 (<20)	0-0.9 (0-0.05)	<15 (<20)	0-0.9 (0-0.06)	<15 (<20)
PDF Scale	5-8 (1-2)		5-7 (1-2)		4-8 (1-2)	
Estimated from data:		_				
Misidentified leptons	-	30 (30)	-	30 (30)	-	30 (30)
Mismeasured charge		29-41 (53-88)	-	-	-	_

- Numbers in brackets are for high-mass, others are all low-mass.
- Dominant source is from misidentified leptons in low-mass.
- High-mass dominant systematics from jets and bkg cross-section.

Results for Signal Regions: Type-1 Dilepton

$m_{\rm N}$	$p_{\mathrm{T}}^{\ell_1}$	$p_{\mathrm{T}}^{\ell_2}$	$m(\ell^{\pm}\ell^{\pm}W_{jet})$	$m(\ell_1 W_{jet})$	$m(\ell_2 W_{jet})$	$m(\ell^{\pm}\ell^{\pm})$	Total bkgd.	N _{obs}	$DY A \epsilon$	m _N (GeV)	$p_{T}^{\ell_{1}}$ (GeV)	$p_{\mathrm{T}}^{\ell_2}$ (GeV)	$m(\ell^{\pm}\ell^{\pm}W_{jet})$ (GeV)	$m(\ell W_{jet})$ (GeV)	$(p_{\rm T}^{\rm miss})^2/S_{\rm T}$ (GeV)	Total bkgd.	N _{obs}	DY $A\epsilon$ (%)	VBF $A\epsilon$ (%)
(GeV)	(Gev)	(Gev)	(Gev)	(Gev)	(Gev)	(Gev)			(70)	ee channel SR1									
e channel SKI	05 50	(0)	-100	.1(0	.1(0	10 (0		45	0.10 + 0.00	85	>25	> 15	>110	45-95	<6	9.5 ± 2.8	9	0.11 ± 0.02	—
20	25-70	60	<190	<160	<160	10-60	48.9 ± 9.5	45	0.12 ± 0.02	90	>25	>15	>110	50-100	<6	12.5 ± 3.5	10	0.23 ± 0.05	—
30	25-70	60	<190	<160	<160	10-60	48.9 ± 9.5	45	0.13 ± 0.02	100	>25	>15	>120	50-110	<6	20.3 ± 5.0	15	1.1 ± 0.1	_
40	25–70	60	<190	<160	<160	10-60	48.9 ± 9.5	45	0.21 ± 0.03	125	>30	>25	>120	90-140	<6	17.7 ± 4.5	17	2.6 ± 0.2	—
50	25–70	60	<190	<160	<160	10-60	48.9 ± 9.5	45	0.24 ± 0.03	150	>40	>25	>180	130-160	<6	14.7 ± 3.8	9	3.1 ± 0.2	—
60	25-70	60	<190	<160	<160	10-60	48.9 ± 9.5	45	0.18 ± 0.02	200	>55	>40	>220	160-225	<6	12.4 ± 2.7	10	4.9 ± 0.4	—
70	25-70	60	<190	<160	<160	10-75	64 ± 12	58	0.10 ± 0.01	250	>70	>60	>310	220-270	<6	6.0 ± 1.7	4	5.9 ± 0.4	
75	25-70	60	<190	<160	<160	10-100	68 ± 12	67	0.13 ± 0.02	300	> 80	>60	>370	235–335	<6	8.2 ± 2.1	6	7.6 ± 0.5	3.0 ± 0.3
e channel SR2										400	>100	>65	>450	335-450	<6	2.5 ± 1.4	4	6.6 ± 0.5	3.0 ± 0.2
20	25-70	60	<100	<70	<70	10-60	50.3 ± 8.5	55	0.26 ± 0.03	500	>125	>65	>560	400-555	<6	1.5 ± 0.8	5	5.5 ± 0.4	2.7 ± 0.2
30	25_70	60	<100	<70	<70	10-60	50.3 ± 8.5	55	0.20 ± 0.00 0.30 ± 0.04	600	>125	_	>760	400-690	<6	0.9 ± 0.6	1	3.8 ± 0.3	1.7 ± 0.2
40	25-70	60	<100	<70	<70	10 60	50.5 ± 0.5	55	0.30 ± 0.04	700	>125	_	>760	400–955	<6	1.7 ± 0.7	1	4.0 ± 0.3	2.8 ± 0.2
40 50	25-70	60	<100	<70	<70	10-60	50.5 ± 0.5	55	0.53 ± 0.04	800	>125	_	>760	400–1130	<6	1.7 ± 0.7	1	3.6 ± 0.3	3.0 ± 0.3
50	25-70	60	<100	<70	<70	10-60	50.5 ± 8.5	55	0.32 ± 0.03	900	>125	_	>760	400-1300	<6	1.7 ± 0.7	1	3.2 ± 0.2	2.9 ± 0.2
60	25-70	60	<100	<70	<70	10-60	50.3 ± 8.5	55	0.24 ± 0.03	1000	>125	_	>760	400–1490	<6	1.7 ± 0.7	1	2.6 ± 0.2	2.4 ± 0.2
70	25–70	60	<100	<70	<70	10-75	65 ± 10	70	0.06 ± 0.01	1100	>125	_	>760	400–1490	<6	1.7 ± 0.7	1	2.2 ± 0.2	2.0 ± 0.2
75	25–70	60	< 100	$<\!70$	$<\!70$	10-80	67 ± 10	70	0.11 ± 0.02	1200	>125	_	>760	400–1600	<6	1.7 ± 0.7	1	2.0 ± 0.2	1.8 ± 0.2
μ channel SR1										1300	>125	_	>760	400–1930	<6	1.7 ± 0.7	1	1.8 ± 0.1	1.6 ± 0.2
20	20-80	15-50	<160	<150	<150	20-60	15.3 ± 3.4	18	0.10 ± 0.02	1400	>125	_	>760	400–1930	<6	1.7 ± 0.7	1	1.5 ± 0.1	1.3 ± 0.1
30	20-80	15-50	<160	<150	<150	20-60	15.3 ± 3.4	18	0.18 ± 0.03	1500	>125	_	>760	400–1930	<6	1.7 ± 0.7	1	1.3 ± 0.1	1.2 ± 0.2
40	20-80	15-50	<160	<150	<150	20-60	15.3 ± 3.4	18	0.34 ± 0.05	ee channel SR2									
50	20_80	15_50	<160	<150	<150	20-60	15.0 ± 0.1 15.3 ± 3.4	18	0.01 ± 0.00 0.40 ± 0.04	85	>25	>15	—	_	<15	10.9 ± 2.9	10	0.001 ± 0.001	—
60	20-00	15 50	<160	<150	<150	20-00	15.5 ± 3.4 15.2 ± 2.4	10	0.40 ± 0.04	90	>25	>15	—	90–220	<15	3.4 ± 1.0	2	0.003 ± 0.002	—
00 70	20-00	15-50	<100	<150	<150	20-00	13.5 ± 3.4	10	0.55 ± 0.04	100	>25	>15	—	100-220	<15	3.4 ± 1.0	2	0.005 ± 0.003	—
70	20-80	15-50	<160	<150	<150	10-75	20.3 ± 4.4	21	0.17 ± 0.02	125	>60	>15	—	123–145	<15	0.2 ± 0.1	0	0.04 ± 0.01	—
75	20-80	15-50	<160	<150	<150	20-100	18.9 ± 4.0	19	0.19 ± 0.03	150	>90	>15	—	125-185	<15	1.3 ± 0.5	0	0.19 ± 0.03	_
μ channel SR2										200	>100	>20	_	173-220	<15	0.8 ± 0.3	1	0.60 ± 0.07	_
20	20-80	15–50	< 100	<70	<70	20-60	25.9 ± 5.9	29	0.28 ± 0.03	250	>100	>25	—	220-305	<15	2.1 ± 1.2	3	2.2 ± 0.2	
30	20-80	15–50	<100	<70	<70	20-60	25.9 ± 5.9	29	0.51 ± 0.05	300	>100	>30	_	270-330	<15	1.3 ± 0.6	1	3.5 ± 0.4	0.6 ± 0.1
40	20-80	15-50	<100	<70	<70	20-60	25.9 ± 5.9	29	0.8 ± 0.1	400	>100	>35	—	330-440	<15	3.1 ± 1.3	3	9.1 ± 0.9	2.9 ± 0.3
50	20-80	15-50	<100	<70	<70	20-60	25.9 ± 5.9	29	1.1 ± 0.1	500	>120	>35	—	440-565	<15	2.8 ± 1.0	1	14.3 ± 1.4	6.1 ± 0.6
60	20-80	15 - 50	<100	<70	<70	20-60	25.9 ± 5.9	29	0.73 ± 0.07	600	>120	_	—	565-675	<15	0.8 ± 0.3	1	17.4 ± 1.8	11.0 ± 1.0
70	20-80	15-50	<100	<70	<70	10-75	$\frac{1}{375} \pm 71$	41	0.20 ± 0.03	700	>140	_	—	635–775	<15	0.8 ± 0.3	2	19.4 ± 2.0	13.1 ± 1.3
76	20 00	15 50	<100	<70	<70	20.80	20.7 ± 6.7	24	0.20 ± 0.00	800	>140	_	_	740–1005	<15	0.9 ± 0.4	0	20.8 ± 2.1	14.0 ± 1.3
70	20-00	15-50	<100	<70	<70	20-00	29.7 ± 0.7	54	0.24 ± 0.03	900	>140	_	—	865-1030	<15	0.2 ± 0.1	0	19.2 ± 2.0	13.2 ± 1.3
eµ channel SKI	a- (a)		407	107	107	• • • •		~ ~ ~	0.00 L 0.0 0	1000	>140	_	—	890-1185	<15	0.3 ± 0.1	1	21.5 ± 2.2	15.3 ± 1.5
20	25-60	15-40	<185	<135	<135	20-60	34.0 ± 6.4	34	0.08 ± 0.02	1100	>140	_	—	1035–1395	<15	0.1 ± 0.1	1	20.3 ± 2.1	14.7 ± 1.4
30	25-60	15-40	<185	<135	<135	20-60	34.0 ± 6.4	34	0.12 ± 0.02	1200	>140	—	—	1085–1460	<15	0.1 ± 0.0	1	20.8 ± 2.2	15.3 ± 1.5
40	25-60	15-40	<185	<135	<135	20-60	34.0 ± 6.4	34	0.21 ± 0.02	1300	>140	—	—	1140-1590	<15	0.1 ± 0.0	1	20.5 ± 2.2	15.5 ± 1.6
50	25-60	15-40	<185	<135	<135	20-60	34.0 ± 6.4	34	0.20 ± 0.03	1400	>140	—	_	1245-1700	<15	0.1 ± 0.0	0	19.6 ± 2.1	15.1 ± 1.6
60	25-60	15-40	<185	<135	<135	20-60	34.0 ± 6.4	34	0.17 ± 0.02	1500	>140	_	_	1300-1800	<15	0.04 ± 0.02	0	19.5 ± 2.1	15.2 ± 1.6
70	25-60	15-40	<185	<135	<135	10-75	51 ± 10	49	0.09 ± 0.01										
75	25-60	15-40	<185	<135	<135	20-100	46.5 ± 8.7	49	0.17 ± 0.03										
w channel SP2	_0 00	-0 10	1100	100	1200	-0 100													High
20	25. 60	15_40	~100	<u>_65</u>	<u>_65</u>	20, 60	517 \pm 02	50	0.21 ± 0.02										<u> </u>
20	25-00	15-40	<100	<00 <(E	<05 <(E	20-00	51.7 ± 9.2	50	0.21 ± 0.02										
30	25-60	15-40	< 100	<65	<65	20-60	51.7 ± 9.2	50	0.27 ± 0.03										
40	25-60	15-40	<100	<65	<65	20-60	51.7 ± 9.2	50	0.45 ± 0.04										
50	25–60	15-40	<100	<65	<65	20-60	51.7 ± 9.2	50	0.40 ± 0.03										
60	25-60	15-40	<100	<65	<65	20-60	51.7 ± 9.2	50	0.24 ± 0.03										
70	25-60	15-40	<100	<65	<65	10-75	75.8 ± 12.4	65	0.09 ± 0.01										
75	25-60	15-40	<100	<65	<65	20-80	62.8 ± 10.9	57	0.12 ± 0.03										
				100	100	-0 00		0.											

Low-Mass

ICHEP 2018 B5

Results for Signal Regions: Type-1 Dilepton

m _N (GeV)	$p_{\mathrm{T}}^{\ell_1}$ (GeV)	$p_{\mathrm{T}}^{\ell_2}$ (GeV)	$m(\ell^{\pm}\ell^{\pm}W_{jet})$ (GeV)	$m(\ell W_{jet})$ (GeV)	$(p_{\rm T}^{\rm miss})^2/S_{\rm T}$ (GeV)	Total bkgd.	N _{obs}	DY $A\epsilon$ (%)	VBF $A\epsilon$ (%)	m _N (GeV)	$p_{\mathrm{T}}^{\ell_1}$ (GeV)	$p_{\mathrm{T}}^{\ell_2}$ (GeV)	$\frac{m(\ell^{\pm}\ell^{\pm}W_{jet})}{(\text{GeV})}$	$m(\ell W_{jet})$ (GeV)	$(p_{\rm T}^{\rm miss})^2/S_{\rm T}$ (GeV)	Total bkgd.	N _{obs}	DY Ac (%)	$\frac{\text{VBF }A\epsilon}{(\%)}$
uu channel SR1	(00)	(00)	(00))	(00))	(00))			(/-/	(,-)	eµ channel SR1									
85	>25	>10	>90	40-100	<9	26.0 ± 6.3	30	0.50 ± 0.05	_	85	>30	>10	>120	55–95	<7	26.1 ± 6.2	25	0.21 ± 0.03	—
90	>25	>10	>90	45-105	<9	34.5 ± 7.5	35	1.2 ± 0.1	_	90	>30	>10	>120	60-100	<7	37.4 ± 8.4	32	0.59 ± 0.07	—
100	>25	>15	>110	55-115	<9	18.6 ± 4.2	20	2.6 ± 0.2	_	100	>25	>20	>110	60–115	<7	23.6 ± 4.8	21	1.3 ± 0.1	_
125	>25	>25	>140	85-140	<7	11.7 ± 2.7	12	5.1 ± 0.4	_	125	>30	>30	>140	90-140	<7	25.5 ± 5.9	16	3.1 ± 0.2	—
150	>35	>35	>150	110-170	<7	8.9 ± 1.9	11	6.6 ± 0.5	—	150	>45	>35	>150	100-170	<7	34.1 ± 6.0	26	5.1 ± 0.3	_
200	>50	>40	>250	160-215	<7	4.6 ± 1.2	4	8.1 ± 0.6	—	200	>65	>35	>270	170-230	<7	11.1 ± 2.8	14	6.1 ± 0.4	_
250	>85	>45	>310	215-270	<7	3.0 ± 0.9	2	11.0 ± 0.8	—	250	>75	>60	>300	200-280	<7	11.1 ± 2.3	9	8.9 ± 0.5	-
300	>100	> 50	>370	225-340	<7	2.6 ± 1.0	2	13.2 ± 0.9	5.2 ± 0.4	300	>95	>60	>340	255-325	<7	5.8 ± 1.7	8	9.0 ± 0.6	3.4 ± 0.3
400	>110	>60	>490	295-490	<7	0.9 ± 0.4	3	11.7 ± 0.8	5.1 ± 0.4	400	>120	>60	>530	325-450	<7	2.2 ± 1.0 1 8 \pm 1 1	6	7.4 ± 0.4	3.0 ± 0.3
500	>110	> 60	>610	370-550	<7	$0.4 \ ^+ \ ^{0.6}_{- \ 0.4}$	3	8.6 ± 0.6	4.1 ± 0.3	500	>150	>00	>500	315 740	<7	1.0 ± 1.1 1.2 ± 0.9	4	0.0 ± 0.3 5.9 ± 0.4	3.0 ± 0.2 3.5 ± 0.3
600	>110	—	>680	370-630	<7	0.3 + 0.3 - 0.3	3	7.4 ± 0.5	4.1 ± 0.3	700	>175	_	>720	350_1030	<7	1.2 ± 0.9 1.6 ± 1.1	3	5.9 ± 0.4 5.2 ± 0.3	3.5 ± 0.5 3.8 ± 0.2
700	>110	_	>800	370-885	<7	0.2 + 0.4 - 0.2	2	6.7 ± 0.4	3.9 ± 0.3	800	>180	_	>720	400-1030	<7	1.0 ± 1.1 1.6 ± 1.1	3	3.2 ± 0.3 4.5 ± 0.3	3.0 ± 0.2 3.7 ± 0.2
800	>110	_	>800	370-890	<7	0.2 + 0.4 - 0.2	2	6.0 ± 0.4	5.4 ± 0.3	900	>185	_	>720	450-1040	<7	1.0 ± 1.1 1.0 ± 0.7	2	38 ± 0.2	3.3 ± 0.2
900	>110	_	>800	370-1225	<7	$0.3 + 0.4 \\ - 0.3$	2	5.4 ± 0.4	5.0 ± 0.3	1000	>185	_	>720	500-1415	<7	1.0 ± 0.7 1.0 ± 0.7	2	3.4 ± 0.2	3.0 ± 0.2
1000	>110	_	>800	370-1230	<7	$0.3 + 0.4 \\ 0.3$	2	4.6 ± 0.3	4.2 ± 0.3	1100	>185	_	>720	550-1640	<7	1.0 ± 0.7	1	2.8 ± 0.2	2.6 ± 0.2
1100	>110	_	>800	370-1245	<7	$0.3 \stackrel{-}{}^{+}_{-} \stackrel{0.3}{}^{0.3}_{-}$	2	4.1 ± 0.3	3.8 ± 0.3	1200	>185	_	>720	600-1780	<7	1.0 ± 0.7	1	2.4 ± 0.2	2.3 ± 0.2
1200	>110	_	>800	370-1690	<7	$0.3 + 0.4 \\ 0.2$	2	3.6 ± 0.2	3.4 ± 0.3	1300	>185	_	>720	650-1880	<7	0.8 ± 0.7	1	2.1 ± 0.1	1.9 ± 0.2
1300	>110	_	>800	370-1890	<7	$0.3 + 0.4 \\ + 0.4 \\ - 0.2$	2	3.2 ± 0.2	3.0 ± 0.2	1400	>185	_	>720	650-1885	<7	0.8 ± 0.7	1	1.8 ± 0.1	1.7 ± 0.2
1400	>110	_	>800	370-1940	<7	0.3 + 0.4	2	2.7 ± 0.2	2.7 ± 0.2	1500	>185	_	>720	650-1885	<7	0.8 ± 0.7	1	1.5 ± 0.1	1.5 ± 0.1
1500	>110	_	>800	370-2220	<7	0.3 + 0.4	2	2.5 ± 0.2	2.3 ± 0.2	1700	>185	—	>720	650-2085	<7	0.8 ± 0.7	1	1.2 ± 0.1	1.3 ± 0.1
uu channel SR2					-	- 0.3				eµ channel SR2									
85	>25	>10	_	_	<15	11.4 ± 3.5	13	0.001 ± 0.001	_	85	>25	> 10	_	_	<15	24.2 ± 6.4	31	0.001 ± 0.002	—
90	>25	>10	_	90-170	<15	4.1 ± 1.3	4	0.003 ± 0.003	_	90	>25	> 10	_	90-240	<15	13.4 ± 3.7	22	0.003 ± 0.002	—
100	>25	>15	_	98-145	<15	1.0 ± 0.3	0	0.006 ± 0.003	_	100	>30	>15	_	100-335	<15	14.1 ± 4.1	21	0.009 ± 0.003	—
125	>60	>15		110-150	<15	0.8 ± 0.3	0	0.08 ± 0.01	_	125	>35	>25		115-150	<15	0.6 ± 0.4	2	0.03 ± 0.01	_
150	>70	>15		145-175	<15	1.0 ± 0.4	2	0.28 ± 0.04	_	150	>45	>30	_	132–180	<15	1.4 ± 0.5	2	0.14 ± 0.02	_
200	>100	>20		175-235	<15	1.3 ± 0.8	0	1.4 ± 0.1	_	200	>70	>30	_	180-225	<15	1.5 ± 0.5	3	0.86 ± 0.09	—
250	>140	>25	_	226-280	<15	0.3 ± 0.2	0	3.0 ± 0.3	_	250	>75	>55	_	225-280	<15	1.2 ± 0.4	2	1.7 ± 0.2	
300	>140	>40	_	280-340	<15	0.4 ± 0.3	0	5.4 ± 0.5	0.7 ± 0.1	300	>95	>55	_	280-340	<15	1.2 ± 0.7	1	4.4 ± 0.4	0.8 ± 0.1
400	>140	>65	_	340-445	<15	0.5 ± 0.3	2	13.3 ± 1.3	2.7 ± 0.3	400	>125	>55	_	340-475	<15	2.0 ± 1.2	1	11.8 ± 1.1	2.7 ± 0.3
500	>140	>65	_	445-560	<15	0.8 ± 0.5	0	22.4 ± 2.2	6.8 ± 0.7	500	>145	>60	_	460-333 EEE 64E	<15	0.7 ± 0.3	0	16.7 ± 1.0	5.2 ± 0.5
600	>140	—	—	560-685	<15	0.7 ± 0.4	0	30.2 ± 2.9	20.4 ± 1.8	700	>100	_		555-645 610 780	<15	1.4 ± 0.9	1	20.2 ± 1.9 25.0 \pm 2.4	15.2 ± 1.2 17.6 ± 1.6
700	>140	—	—	635-825	<15	0.8 ± 0.4	2	34.6 ± 3.4	24.7 ± 2.2	800	>170	_		730 895	<15	2.0 ± 0.9 0.8 ± 0.4	2	25.0 ± 2.4 26.1 ± 2.5	17.0 ± 1.0 183 ± 1.6
800	>140	—	—	755–960	<15	0.4 ± 0.3	0	34.8 ± 3.5	24.9 ± 2.3	900	>170	_		845 1015	<15	0.0 ± 0.4 0.5 ± 0.2	2	20.1 ± 2.3 25.6 ± 2.5	18.5 ± 1.0 185 ± 17
900	>140		_	840-1055	<15	0.2 + 0.2 - 0.2	1	35.8 ± 3.6	26.9 ± 2.5	1000	>180	_	_	930-1075	<15	0.3 ± 0.2 0.2 ± 0.2	0	23.0 ± 2.3 23.5 ± 2.3	17.5 ± 1.7 17.6 ± 1.6
1000	>140	_	—	900-1205	<15	$0.1 + 0.2 \\ - 0.1$	1	38.4 ± 3.9	28.9 ± 2.7	1100	>180	_	_	1020-1340	<15	0.2 ± 0.2 0.3 ± 0.3	0	26.9 ± 2.3	19.6 ± 1.0 19.6 ± 1.7
1100	>140	_	_	990-1250	<15	$0.1 + 0.2 \\ - 0.1$	1	36.7 ± 3.7	29.2 ± 2.7	1200	>180	_	_	1080-1340	<15	0.1 + 0.2	0	25.9 ± 2.6	19.9 ± 1.9
1200	>140	_	_	1035-1430	<15	0.2 + 0.3 - 0.2	1	38.5 ± 4.0	30.1 ± 2.8	1300	>180	_		1155-1595	<15	0.1 - 0.1 - 0.1 - 0.2	0	27.1 ± 2.0	20.7 ± 1.0
1300	>140	_	_	1100-1595	<15	0.3 ± 0.3	1	38.5 ± 4.0	30.7 ± 3.0	1400	>180	_		1155-1615	<15	0.2 - 0.2 0.2 + 0.3	0	267 ± 2.7	20.8 ± 2.0
1400	>140	_	_	1285-1700	<15	0.1 + 0.2 - 0.1	1	35.9 ± 3.8	29.4 ± 2.8	1500	>180	_	_	1345_1615	<15	0.2 - 0.2 - 0.2 - 0.1 - 0.1	0	20.7 ± 2.7 21.6 + 2.2	18.0 ± 1.0
1500	>140	_	_	1330-1800	<15	$0.1 \stackrel{-}{+} \stackrel{0.1}{0.2}$	1	36.4 ± 3.9	30.0 ± 2.9	1700	>180	_	_	1400-1800	<15	0.0 - 0.0 - 0.0 - 0.7 + 0.6	0	19.8 ± 2.2	17.0 ± 1.7 17.0 ± 1.7
						- 0.1				1700	/100			1400-1000	<1J	0.7 ± 0.0	0	17.0 ± 2.1	11.0 ± 1.7

High-Mss

High-Mss

• SR1 600 GeV mm channel; 3 observed, 0.3 predicted, SR2 0 observed and 0.7 predicted.

RH neutrinos from W_R in Iljj events

- LR symmetric model, no flavor changing
- Signatures : 2 electrons + 2 jets, 2 muons + 2 jets
- Selections :
 - $2 \operatorname{high-p_T}$ leptons ($p_T^{\text{leading}} > 60 \text{ GeV}$,

 $p_{T^{subleading}}$ >53 GeV) and $|\eta|$ <2.4

- $2 \text{ high-}p_T \text{ jets}$ (>40 GeV) and $|\eta| < 2.4$
- $\Delta_R > 0.4$ to ensure separation between final state objects
- Signal region requirements: $m_{\ell\ell}$ >200 GeV, $m_{\ell\ell jj}$ >600 GeV
- Background estimation :
 - tt (~75%) \rightarrow data-driven estimate from e- μ CR
 - Drell-Yan+jets (~20%) \rightarrow from simulation, normalized to data in Z peak region
 - W+jets, diboson, single top (~5%) \rightarrow from simulation

 $(lumi = 35.9 \text{ fb}^{-1})$

RH neutrinos from W_R in Iljj events

- No significant excess observed ->Cut and count limit extraction.
- Limit set on m_{WR.} < 4.4 TeV.
 - Use $m_N = 1/2 m_{WR}$
- Improves limit by 1 TeV vs 2015 results.