COHERENT constraints on generalized neutrino-quark interactions

D. Aristizabal ICHEP2018

(arXiv:1806.07424)

V. De Romeri (IFIC), N. Rojas (USM)

ICHEP2018, July 07, 2018 - p. 1

Coherent Elastic

Neutrino-Nucleus Scattering

- CEvNS
- Relevant neutrino sources
- COHERENT
- Physics potential

Sensitivity to new physics

Summary

Coherent Elastic Neutrino-Nucleus Scattering

CE*v***NS**

CEvNS occurs when the neutrino energy E_v is such that nucleon amplitudes sum up coherently \Rightarrow cross section enhancement

Coherent Elastic

Neutrino-Nucleus Scattering

● CEvNS

Relevant neutrino sources

• COHERENT

Physics potential

Sensitivity to new physics

Relevant neutrino sources

"Astrophysical" sources

Solar+Atm:v backgrounds DM detectorsReactor:Basis for CONUS, v-CLEUSFixed target:COHERENT experiment

COHERENT

Talk by Grayson Rich

CEVNS observed by COHERENT more than 40 years after its prediction Akimov et. al. 2017

Coherent Elastic

Neutrino-Nucleus Scattering

• CEvNS

• Relevant neutrino sources

● COHERENT

Physics potential

Sensitivity to new physics

Summary

COHERENT uses neutrinos produced in SNS

@ Oak Ridge National Laboratory in the collision p - Hg

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$
$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

Presence of CEvNS favored @ the 6.7 σ level. Data consistent with SM @ the 1 σ

 $n_{\rm PE} = 1.17 \, (E_R / {\rm keV})$

There is still some room for NEW PHYSICS!

Physics potential

Coherent Elastic

- Neutrino-Nucleus Scattering
- CEvNS
- Relevant neutrino sources
- COHERENT

Physics potential

Sensitivity to new physics

Summary

- Determination of SN neutrino properties through measurement of the neutrino DSNB or neutrino emission in a single SN explosion
- Study of nuclear properties such as: Nuclear radius, skin depth,neutron form factor, neutron radius
 Talk by Yufeng Li
 - Measurement, study and test of the SM axial nuclear current
- Unlocking the possible presence of new physics in the form of: Heavy or light mediators, EM neutrino properties such as μ_{ν} , $\langle r_{\nu} \rangle$

CEvNS opens a window to a full

neutrino theoretical/phenomenological program

Coherent Elastic Neutrino-Nucleus Scattering

Sensitivity to new physics

- The case of NSI
- Constraints
- The NGI case
- Constraints from oscillations
- Parameter space scenarios
- One-parameter analysis
- Improving data fit

Summary

Sensitivity to new physics

The case of NSI

Talk by Danny Marfatia

Non-standard interactions parametrized in a model-independent and phenomenological way

Wolfenstein, 1978

$$\mathcal{L} \sim G_F \sum_{q=u,d} \bar{v}_i (1-\gamma_5) \gamma_{\mu} v_j \bar{q} (\epsilon^{qV}_{ij} - \epsilon^{qA}_{ij} \gamma_5) \gamma^{\mu} q$$

Phenomenological constraints from forward coherent scattering (matter potentials) DIS and COHERENT data

Scenarios |

Gonzalez-Garcia et. al, 2017

- For $m_X^2 \ll q^2$ contributions of NSI to DIS are suppressed, $q_{\text{DIS}}^2 \gtrsim (10 \text{GeV})^2$
- Light mediator scenarios: $M_X \subset [10, 10^3]$ MeV \Rightarrow DIS constraints evaded
- Heavy mediator scenarios: $M_X \subset [1, 10^3]$ GeV all constraints apply

COHERENT constraints are particularly relevant for light mediators

Coherent Elastic Neutrino-Nucleus Scattering

Sensitivity to new physics

The case of NSI

Constraints

The NGI case

Constraints from oscillations

Parameter space scenarios

- One-parameter analysis
- Improving data fit

Constraints

1.0

0.5

0.0

-0.5

-1.0

CHARM

 ϵ^{uV}_{ee}

Coherent Elastic Neutrino-Nucleus Scattering

Sensitivity to new physics

• The case of NSI

- Constraints
- The NGI case
- Constraints from oscillations
- Parameter space scenarios
- One-parameter analysis
- Improving data fit

Summary

COHERENT data has been used to constraint NSI contributions to the CEvNS

Gonzalez-Garcia et. al, 2017 J. Liao & D. Marfatia, 2017 Kosmas et. al, 2018 Billard et. al, 2018

The NGI case

NSI are a subset of a larger set of neutrino-quark interactions: Neutrino Generalized Interactions (NGI)

$$\mathcal{L} \sim G_F \sum_{q=u,d} (\bar{v} \Gamma_A v) \left[\bar{q} \Gamma_A \left(C_A^q + i D_A^q \gamma_5 \right) q \right]$$

$$\Gamma_{A} = \{\mathbb{I}, i\gamma_{5}, \gamma_{\mu}, \gamma_{5}\gamma_{\mu}, \sigma_{\mu\nu}\}$$

Diagonal and non-diagonal LS

$$\Gamma_P : \mathscr{L} \sim \bar{\nu} \gamma_5 \nu \bar{q} \left(\gamma_5 C_P^q + \mathbb{I} D_P^q \right) q$$

P and *A* quark currents are nuclear spin-dependent $\Rightarrow Z_{\uparrow} - Z_{\downarrow}$, $N_{\uparrow} - N_{\downarrow}$

$$\begin{aligned} \mathscr{L}_{S} &\sim (\bar{v}v) \left[\bar{q} \left(C_{S}^{q} + i\gamma_{5} D_{S}^{q} \right) q \right] \\ \mathscr{L}_{P} &\sim \left(\bar{v}\gamma_{5}v \right) \left[\bar{q} \left(\gamma_{5} C_{P}^{q} + i D_{P}^{q} \right) q \right] \\ \mathscr{L}_{V} &\sim \left(\bar{v}\gamma^{\mu}v \right) \left[\bar{q} \left(\gamma_{\mu} C_{V}^{q} + i\gamma_{\mu}\gamma_{5} D_{V}^{q} \right) q \right] \\ \mathscr{L}_{A} &\sim \left(\bar{v}\gamma^{\mu}\gamma_{5}v \right) \left[\bar{q} \left(\gamma_{\mu}\gamma_{5} C_{A}^{q} + i\gamma_{\mu} D_{A}^{q} \right) q \right] \\ \mathscr{L}_{T} &\sim \left(\bar{v}\sigma^{\mu v}v \right) \left[\bar{q} \left(\sigma_{\mu v} C_{T}^{q} + i\sigma_{\mu v}\gamma_{5} D_{T}^{q} \right) q \right] \end{aligned}$$

$$\mathcal{P}_{1} = \{C_{S}^{q}, D_{P}^{q}, C_{V}^{q}, D_{A}^{q}, C_{T}^{q}\} \quad \checkmark$$
$$\mathcal{P}_{2} = \{C_{P}^{q}, D_{S}^{q}, C_{A}^{q}, D_{V}^{q}, D_{T}^{q}\} \quad \bigstar$$
Constraints on \mathcal{P}_{2} are weak!

Coherent Elastic

Summary

Neutrino-Nucleus Scattering

Constraints from oscillations
Parameter space scenarios
One-parameter analysis
Improving data fit

Sensitivity to new physics

The case of NSI
Constraints

The NGI case

Constraints from oscillations

Constraints from forward coherent scattering are only relevant for vector interactions

Matter potentials

Bergmann, Grossman, Nardi, 1999

$$\mathscr{L}_{\text{int}} \sim \sum_{a,f} (\bar{v} \Gamma^a v) \underbrace{V_a^f}_{\text{Matter potential}}$$

Scalar & Pseudoscalar: Helicity suppressed

Axial & Tensor: Relevant only in polarized media

Constraints on NGI (apart from V) arise only from

Scattering processes (order G_F^2 interactions)

Coherent Elastic Neutrino-Nucleus Scattering

Sensitivity to new physics

- The case of NSI
- Constraints
- The NGI case

Constraints from oscillations

- Parameter space scenarios
- One-parameter analysis
- Improving data fit

Summary

$$V_V \sim G_F n_f + \cdots$$
$$V_{A,T} \sim G_F n_f g_{A,T} \left\langle \frac{\sigma_f p_f}{E_f} \right\rangle + \cdots$$

 $V_{S,P} \sim G_F n_f g_{S,P} \langle \frac{m_f}{E_f} \rangle$

Parameter space scenarios

Cross section parameterized in terms of nuclear currents: Scalar, Vector and Tensor

Lidner, Rodejohann, Xu, 2016

DAS, De Romeri, Rojas, 2018

$$\frac{d\sigma^{a}(q^{2}=0)}{dE_{r}} = \frac{G_{F}^{2}}{4\pi} m_{N_{a}} N_{a}^{2} \left[\xi_{S}^{2} \frac{E_{r}}{E_{r}^{\text{max}}} + \xi_{V}^{2} \left(1 - \frac{E_{r}}{E_{r}^{\text{max}}} - \frac{E_{r}}{E_{v}} \right) + \xi_{T}^{2} \left(1 - \frac{E_{r}}{2E_{r}^{\text{max}}} - \frac{E_{r}}{E_{v}} \right) - R \frac{E_{r}}{E_{v}} \right]$$

Scenarios

- Single parameter case: Only one nuclear current present at a time
- Two parameter case: Two nuclear currents are simultaneously present

Coherent Elastic Neutrino-Nucleus Scattering

Sensitivity to new physics

- The case of NSI
- Constraints
- The NGI case

Constraints from oscillations

• Parameter space scenarios

• One-parameter analysis

Improving data fit

One-parameter analysis

 $\xi_{S}^{2} = \frac{C_{S}^{2} + D_{P}^{2}}{N^{2}}$

Coherent Elastic
Neutrino-Nucleus Scattering

Sensitivity to new physics

- The case of NSI
- Constraints
- The NGI case
- Constraints from oscillations
- Parameter space scenarios
- ullet One-parameter analysis
- Improving data fit

Param	BFP value	90% CL	99% CL
ξ_S	0	[-0.62, 0.62]	[-1.065, 1.065]
Ċ	-0.113	[-0.324, 0.224]	[-0.436, 0.67]
ζV	-1.764	[-2.102, -1.554]	[-2.545, -1.442]
ξ_T	0	[-0.591, 0.591]	[-1.071, 1.072]

Improving data fit

The presence of NGI can indeed improve the data fit... In particular for the vector NGI

Coherent Elastic Neutrino-Nucleus Scattering

Sensitivity to new physics

- The case of NSI
- Constraints
- The NGI case
- Constraints from oscillations
- Parameter space scenarios
- One-parameter analysis

Improving data fit

Summary

If such trend persist with further data... Is there BSM physics hidden in CEvNS

Coherent Elastic Neutrino-Nucleus Scattering

Sensitivity to new physics

Summary

Résumé

Coherent Elastic Neutrino-Nucleus Scattering

Sensitivity to new physics

Summary Résumé

- COHERENT data and forthcoming data from CONUS and e.g. *v*-CLEUS will allow unraveling the presence of new physics
- Good understanding of the SM contribution including the axial piece, nuclear physics form factors...
- NGI are the most general set of effective interactions. Using current data we have derived constraints: NGI can still be fairly large
- If new interactions are present in the neutrino sector, forthcoming data might allow their discovery