

"Experimental Setup to capture high resolution images for Quality Control of GEM Foils"

César A. Rodríguez S, Rafael M. Gutiérrez Universidad Antonio Nariño Bogotá, Colombia

ICHEP 2018, Seoul-Korea.

6th July, 2018.

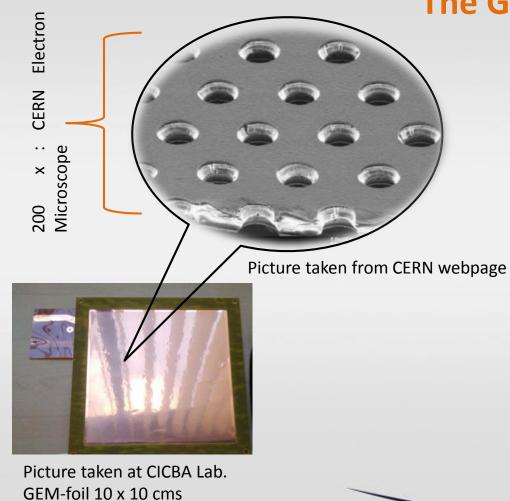
1

(CONP.P/UED

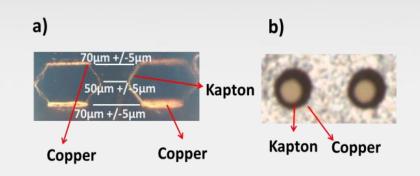
Acknowledgments

- Universidad Antonio Nariño
- COLCIENCIAS

2

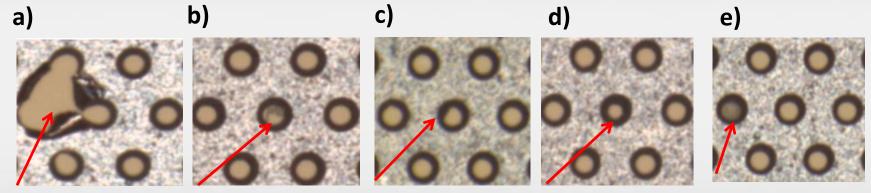


Outline


- 1. Introduction
- 2. Methods
- 3. Results and Discussions
- 4. Conclusions
- 5. Perspectives

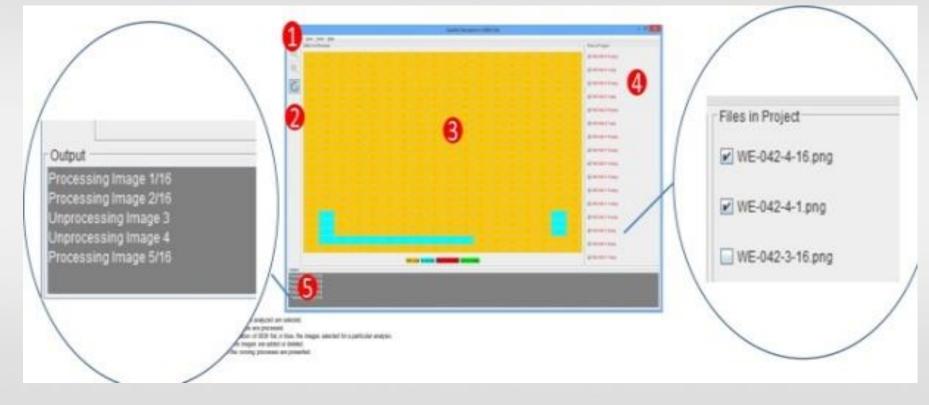
- Introduction •
- Methods •
- Results and Discussions
- Conclusions •
- Perspectives

The GEM-Foils



- a) Cross section of a GEM-foil (Image taken Technology Transfer from Agency, TECHTRA).
- b) Image of a hole captured from above and perpendicular to the plane of the hole.

- Introduction
- Methods
- Results and • Discussions
- Conclusions •
- Perspectives •



(a) Triangular damage by acid. (b) Partial obstruction by dust. (c) Incomplete Kapton drilling. (d) Conical section affected. (e) Total obstruction by dust.

- Introduction
- Methods
- Results and Discussions
- Conclusions
- Perspectives

SOFA (Software for Foils Analysis)

SOFA Analyze 432 images in 36 minutes

Setup Components (High Resolution Camera)

- Introduction
- *Methods*
- Results and Discussions
- Conclusions
- Perspectives

- Sensor Aptina 1/2.3 inch color CMOS
- Resolution: 4912x3684 pixels (18M pixels); Pixel size: 1.25 um x 1.25 um;
- Frame speed: 5.6fps at 4912x3684, 18.1fps at 2456x1842, 32.2fps at 1228x922

Setup Components (High Resolution Camera 2)

- Introduction
- Methods
- Results and Discussions
- Conclusions
- Perspectives

- 14 megapixel Panasonic sensor 1/2.3 inch
- Model: Camera with HDMI 1080P @60FPS USB2.0 @ 30FPS two output
- Transverse and vertical line: Support multi-color, 5 pcs of transverse lines/vertical lines, moveable
- Image resolution: 4320*3240 (for TF card) 1920 *1080
 @ 60FPS(for TF card);1920*1080 (for USB)
- Video format: MP4(for TF card) ; Image format: JPG; USB Video resolution: 1920 *1080 @ 30FPS

Setup Components (Monocular 300 X)

- Introduction
- Methods
- Results and Discussions
- Conclusions
- Perspectives

- Objective Magnification Power by 0.7 4.5X(about 10 300X on the display)
- Size: 24.5mm(L) * 50mm(DIA),1.0X C-mount adapter
- C-mount Lens Working distance: 105mm-115mm
- Monocular 300X Industry Zoom C-mount Lens
- focusing mechanism : Focusing handwheel tightness is adjustable focusing range 15mm & 40mm

- Introduction
- Methods
- Results and
 Discussions
- Conclusions
- Perspectives

Setup Components (Linear Stepper)

- X Travel: 12 in (300 mm)
- Y Travel: 12 in (300 mm)
- Resolution: 1 micron
- Speed: 0.1 to 60 in/s (1.5 m/s)
- Payload: Up to 5 lbs (2 kg)
- Acceleration: 0.1 to 2 Gs
- Repeatability: +/- 0.001 in (25 microns).

- Introduction
- Methods
- Results and Discussions
- Conclusions
- Perspectives

Acquired Image

000000000

000000000

0000000

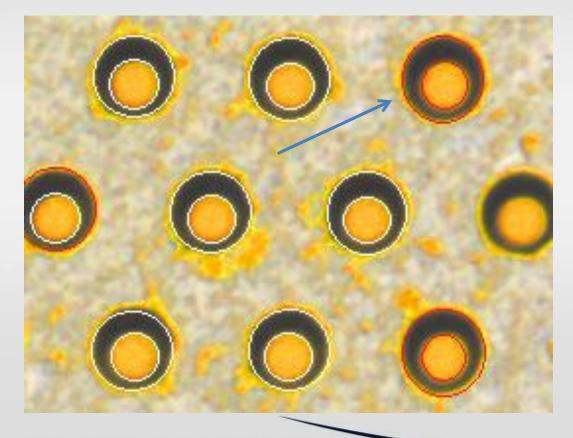
000000000

0000000000

00000000000

0000000

00000000


- Image captured Manually
- Image captured at Detector Lab
- Resolution: 4912x3684 pixels (18 Megapíxel).
- Area: 3 x 2 mm (aprox).
- Format: .PNG
- ✤ Size: ~35 MB
- ✤ Cantidad: 520

• Introduction

- Methods
- Results and
 Discussions
- Conclusions
- Perspectives

Software Analysis

Inner Radius and outer Radius

The defective hole is highlighted in red; the good holes are highlighted in white

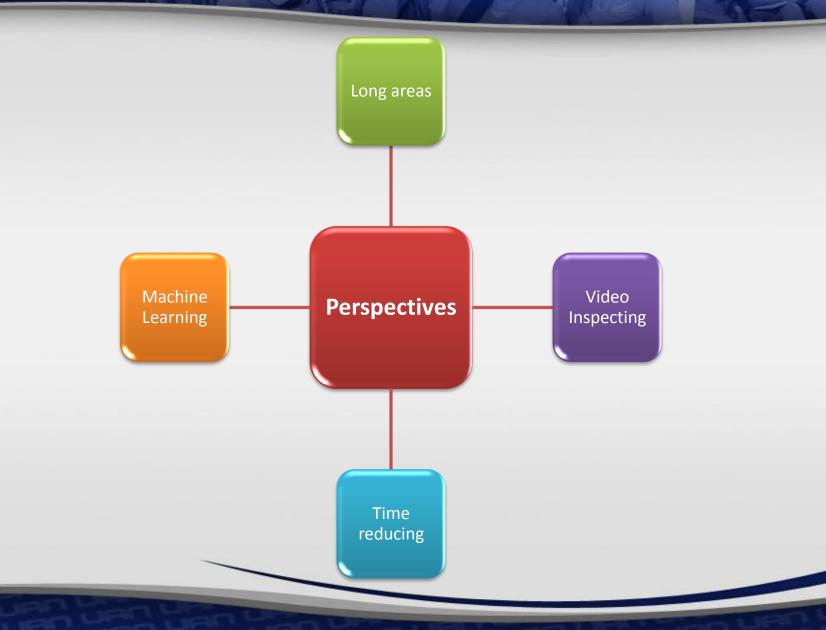
(C)O.N.P.P

Discussions

- Introduction
- Methods
- *Results and Discussions*
- Conclusions
- Perspectives

- Although the images have a better resolution, we have to generate a synchronization process between the camera's shutter and the speed of the device.
- SOFA offers an effective solution to lighting variations on the GEM-full image, however, we need to explore different light sources with the purpose to improve the results.
- We need to experiment with methods such as stitching and registration because in most of the cases some holes remain on the edges of images.

C)O.N.P.P


- Introduction
- Methods
- Results and
 Discussions
- Conclusions
- Perspectives

Conclusions

This work presents an experimental setup to capture high-resolution images with quality control purposes. The results demonstrate that SOFA and the setup are compatible to detect defects in GEM-Foils. Therefore, the presented software and setup is a not expensive and faster alternative to the current GEM-foil quality control processes. SOFA is also an effective tool to support a R&D process to correlate the performance of GEM detectors with GEM-foil quality.

- Introduction
- Methods
- Results and
 Discussions
- Conclusions
- Perspectives

VIDEO RECORDING

- Introduction
- *Methods*
- Results and
 Discussions
- Conclusions
- Perspectives

We are working on GEM-foil quality control using video recording and machine learning techniques such as pattern recognition. This will allow in the future to do an online inspection using less time and resources.

Questions

