Physics Highlights of ATLAS and ALICE

Tancredi Carli (CERN)

LHC performance and data-set

Challenge to cope with pile-up interactions

Large number of additional interactions (pile-up) cause performance degradation. Powerful pile-up mitigation techniques developed. The performance loss is well described by Monte Carlo simulation.

Example: H (→ZZ→4I) channel

Higgs boson discovered in July 2012 at LHC.

Is the new particle the SM Higgs boson ? \rightarrow measure it properties !

Example for high purity but low branching fraction Higgs decay to four leptons H (\rightarrow ZZ \rightarrow 4l):

L=4.8 fb⁻¹ and 5.8 fb⁻¹ at 7 and 8 TeV

L=80 fb⁻¹ at 13 TeV

Standard Model Lagrangian

Yukawa coupling with new scalar (completely new interaction type) ttH, $H \rightarrow bb$ and $H \rightarrow \tau\tau$ are important !

Higgs potential $(\mu^2 \phi^2 + \lambda \phi^4)$ (to be explored by High Lumi-LHC)

Gauge boson interaction with new scalar (new for scalar, but known for fermions)

Higgs measurements at LHC test new part of SM

Gauge boson and Yukawa fermion coupling

Interaction with gauge bosons:

Yukawa coupling to fermions:

JHEP 08 (2016) 045

Only glimpse at 7 and 8 TeV (2012)

5.5 σ (5.0 σ) obs (exp) for 7/8/13 TeV

ATLAS/CMS combined $H \rightarrow \tau \tau$:

Earlier 7 and 8 TeV results:

At 7 and 8 TeV Higgs boson discovered. Main channels: $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ$, $H \rightarrow WW$

Recent 13 TeV results:

Differential cross-section using gauge boson decays

Higgs decays to gauge bosons used for differential cross-section measurements.

Differential cross-section becoming more and more precise with increasing statistics. Data well described by recent SM predictions.

7

Associated Higgs top quark pair production

Higgs production:

Gluon-gluon fusion (ggF)

Associated ttH production (ttH)

σ(ttH)~ 1% σ(H)

Yukawa coupling:

 $y_t \approx v/(m_t\sqrt{2}) \approx 1$

Large top mass \rightarrow Higgs coupling is strong. Top Yukawa y_t coupling is in loop for ggF (might contain BSM contribution). but ttH production gives direct constraint on y_t

Branching fraction:

H → bb	58%
$H \rightarrow WW^*$	21%
$H \to \tau \tau$	6%
$H \rightarrow ZZ^*$	2.6%
$H \rightarrow \gamma \gamma$	0.2%

For $H \rightarrow WW$ and $H \rightarrow ZZ$ only leptonic decays

Evidence in December 2017 (36 fb⁻¹):

Channel	Signif	icance	-
	Observed	Expected	_
Multilepton	4.1σ	2.8σ	
$H \to b \bar{b}$	1.4σ	1.6σ	Phys. Rev. D 97 (2018) 072003 Phys. Rev. D 97 (2018) 072016
$H\to\gamma\gamma$	0.9σ	1.7σ	arXiv:1802.04146
$H\to 4\ell$		0.6σ	
Combined	4.2σ	3.8σ	_
			= 8

Observation of ttH production

arXiv:1806.00425

Direct observation of top Higgs coupling. Confirmation of Yukawa coupling to fermions.

ttH production cross-section

June 2018 update: ttH($\rightarrow \gamma\gamma$) and ttH($\rightarrow ZZ \rightarrow 4I$) with 80 fb⁻¹

Observation of H \rightarrow bb

ATLAS-CONF-2018-036

Higgs coupling measurements

Key feature:

Higgs coupling depends on the particle mass

All couplings to high mass particles measured. Next challenge: muon, charm-quark...

+ detailed cross-section measurements !

Interaction with gauge H \rightarrow ZZ [*] Well established in run-1	bosons: ATLAS-CONF-2018-018
H → WW [*] 6.3 (5.2) σ obs (exp) (run	ATLAS-CONF-2018-004 a-2 only)
Yukawa coupling to fer	mions:
Top-quark: ttH80 6.3σ (5.1σ) obs (exp)	<mark>) fb⁻¹</mark> arXiv:1806.00425
Beauty-quark $H \rightarrow bb$: 80 5.4 σ (5.5 σ) obs (exp)	fb⁻¹ ATLAS-CONF-2018-036
Tau-lepton: $H \rightarrow \tau \tau$ 6.4 σ (5.4 σ) obs (exp)	ATLAS-CONF-2018-021
Muon $H \rightarrow \mu\mu$: $\sigma_{\text{limit}} / \sigma_{\text{SM}} < 2.1 \text{ (obs)}$	fb⁻¹ ATLAS-CONF-2018-026
Charm-quark: $H \rightarrow cc$: $\sigma_{iimit} / \sigma_{SM} < 104$ (obs)	PRL 120 (2018) 211802

Higgs production modes

Associated ttH production (ttH) Associated WH or ZH production (VH) Vector-boson fusion (VBF) Gluon-gluon fusion (ggF) observed since 2012 **ATLAS** Preliminary Syst. — SM Stat. Total and used for precision measurements ($\sim 10\%$). $\sqrt{s} = 13 \text{ TeV}, 36.1 - 80 \text{ fb}$ ATLAS-CONF-2018-031 $m_{H} = 125.09 \text{ GeV}, |y_{...}| < 2.5$ Syst. Stat. Total $1.07 \pm 0.09 \qquad (\pm 0.07 \ , \pm 0.07 \)$ ggF VH 5.3σ (4.8 σ) obs (exp) ATLAS-CONF-2018-036 $1.21 \pm \begin{smallmatrix} 0.22 \\ 0.21 \end{smallmatrix} \ (\pm \begin{smallmatrix} 0.18 \\ 0.18 \end{smallmatrix} , \pm \begin{smallmatrix} 0.13 \\ 0.12 \end{smallmatrix})$ VBF VBF 6.5σ (5.3 σ) obs (exp) ATLAS-CONF-2018-031 $1.57 \pm \begin{smallmatrix} 0.52 \\ 0.48 \end{smallmatrix} \ (\ \pm \begin{smallmatrix} 0.37 \\ 0.35 \end{smallmatrix} \ , \ \pm \begin{smallmatrix} 0.37 \\ 0.32 \end{smallmatrix} \)$ WH ttH 6.3σ (5.1 σ) obs (exp) arXiv:1806.00425 $0.74 \pm {}^{0.42}_{0.40}$ ($\pm {}^{0.34}_{0.32}$, $\pm {}^{0.25}_{0.24}$) ΖH $1.22 \pm {}^{0.26}_{0.25}$ ($\pm {}^{0.17}_{0.17}$, $\pm {}^{0.20}_{0.18}$) ttH + tH Observed all major Higgs production modes ! 2.5 3 3.5 0.5 1.5 2 0 Consistent with SM. Cross-section normalized to SM value

SM Di-Higgs production

Production processes:

Observation of same-sign WWjj

ATLAS-CONF-2018-030

Higgs boson needed to restore unitarity of the WW scattering cross-section.

- \rightarrow Higgs boson leads to strong suppression via gauge cancellation of individual EW diagrams.
- \rightarrow Part of electroweak symmetry breaking studies.

 $pp \rightarrow W^{+/-} W^{+/-}$ jet jet process:

-Large electroweak cross-section fraction ($\sigma_{_{EW}}/\sigma_{_{QCD}}$). and a strong background suppression.

Significance: 6.9σ (4.6σ) obs (exp)

```
Fiducial cross-

\sigma_{fid} = 2.91^{+0.51}_{-0.47}(stat.) ± 0.27(syst.) fb

\sigma_{fid}^{Sherpa} = 2.01^{+0.33}_{-0.23} fb

\sigma_{fid}^{Powheg} = 3.08^{+0.45}_{-0.46} fb
```


WZ and WZjj production

Electroweak production of WZ boson in association with two jets $pp \rightarrow W^{+}Z$ jet jet

Spin correlation in top pair events

Spin correlation for $pp \rightarrow tt \rightarrow e \mu b b$ measured between the top decay products and a spin axis. $\Delta \Phi(e\mu)$ is a sensitive variable.

Parton level $\Delta \phi(l^+, \bar{l})/\pi$ [rad/ π]

Similar results for fiducial particle-level and comparisons of ME generators.

Template fit on $\Delta \Phi(e\mu)$:

- $f_{_{SM}}$ fraction of expected cross-section under the SM spin hypothesis
- No spin correlation template: top decay with spin correlation disabled

Stronger spin correlations observed than expected by NLO QCD.

Fit result: f=1.250+-0.026+-0.0633.2 σ discrepancy with NLO QCD

ATLAS-CONF-2018-027

Previous analyses also measured stronger spin correlations (with large uncertainties).

Search for new electro-weak boson

Very active search program (SUSY, dark matter, new Higgs models...) In total, 62 search papers submitted (36 fb⁻¹). 8 new preliminary new physics searches with 80 fb⁻¹.

New electro-weak gauge boson (W') in context of sequential SM benchmark model.

High-mass Di-jet event from WW production

At high p_{t} jets from the W \rightarrow qq decay are close-by and merge in a large-R jet.

Many techniques developed to reconstruct boosted particles.

W-boson tagging based on large-R jet substructure.

New experimental technique: Energies from calorimeter clusters, but angles from tracks.

Di-boson resonance search

Active SUSY search program

28 publications on SUSY searches with 2015-2016 data (36 fb⁻¹).

ATLAS Preliminary ATLAS SUSY Searches* - 95% CL Lower Limits July 2018 $\sqrt{s} = 7, 8, 13 \text{ TeV}$ e, μ, τ, γ Jets $E_{m}^{\text{miss}} \int \mathcal{L} dt [\text{fb}^{-1}]$ Mass limit $\sqrt{s} = 7,8$ TeV $\sqrt{s} = 13$ TeV Model $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ 2-6 jets Yes 36.1 1.55 $m(\tilde{\chi}_1^0) < 100 \, GeV$ 0 mono-je 1-3 jets Yes 36.1 1x, 8x Dege 0.43 0.71 $m(\tilde{q})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}$ Inclusive Searches 2-6 jets 36.1 $m(\tilde{\chi}_1^0) < 200 \, GeV$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ 0 Yes 2.0 0.95-1.6 $m(\tilde{\chi}_1^0)=900 \text{ GeV}$ 3 1.85 $m(\tilde{\chi}_1^0) < 800 \, \text{GeV}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$ 4 jets 36.1 2 jets Yes 36.1 1.2 ee, µµ $m(\tilde{g})-m(\chi_1)=50 \text{ GeV}$ 0 7-11 jets Yes 36.1 1.8 $m(\tilde{\chi}_1^0) < 400 \, \text{GeV}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$ 3 e, µ 4 jets 36.1 0.98 $m(\tilde{g})-m(\tilde{\chi}_1^0)=200 \text{ GeV}$ 0-1 e, µ 2.0 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$ 3hYes 36.1 n(20)~200 GeV 3 e, µ 4 jets 36.1 1.25 $m(\tilde{g})-m(\tilde{\chi}_1^0)=300 \text{ GeV}$ Multiple $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$ $m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=1$ 36.1 Forbidden 0.9 Multiple 0.58-0.82 $m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=BR(t\tilde{\chi}_{1}^{\pm})=0.5$ 36.1 Multiple 36.1 Forbidden 0.7 $m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm})=300 \text{ GeV}, BR(t\tilde{\chi}_{1}^{\pm})=1$ $\tilde{b}_1\tilde{b}_1,\tilde{t}_1\tilde{t}_1,\,M_2=2\times M_1$ Multiple 36.1 0.7 $m(\tilde{\chi}_1^0)=60 \text{ GeV}$ Multiple 0.9 36.1 $m(\tilde{\chi}_1^0)=200 \, \text{GeV}$ 0-2 e, µ 0-2 jets/1-2 b Yes $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$ 36.1 1.0 $m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$ $\tilde{t}_1 \tilde{t}_1, \tilde{H} LSP$ Multiple 0.4-0.9 $m(\tilde{\chi}_1^0)=150 \text{ GeV}, m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5 \overline{\text{GeV}, \tilde{t}_1 \approx \tilde{t}_2}$ 36.1 Multiple 36.1 Forbidder 0.6-0.8 $m(\tilde{\chi}_1^0)=300 \text{ GeV}, m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5 \text{ GeV}, \tilde{t}_1 \approx \tilde{t}_L$ $m(\tilde{\chi}_1^0)=150 \text{ GeV}, m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5 \text{ GeV}, \tilde{\iota}_1 \approx \tilde{\iota}_1$ $\tilde{t}_1 \tilde{t}_1$, Well-Tempered LSP 36.1 0.48-0.84 Multiple 36.1 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$ 0 2cYes 0.85 $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 0.46 $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$ 0 mono-jet Yes 36.1 0.43 $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$ 1-2 e, µ 4 bYes 36.1 0.32-0.88 $m(\tilde{\chi}_{1}^{0})=0$ GeV, $m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=180$ GeV $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ0.6 2-3 e, µ Yes 36.1 $\tilde{\chi}_1^{\pm} / \tilde{\chi}_2^0$ $\tilde{\chi}_1^{\pm} / \tilde{\chi}_2^0$ $m(\tilde{\chi}_1^0)=0$ 0.17 ee, µµ ≥ 1 Yes 36.1 $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=10 \text{ GeV}$ $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ via Whll/lyy/lbb $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Yes 20.3 0.26 $m(\tilde{\chi}_{1}^{0})=0$ $\begin{array}{c} \tilde{\chi}_1^{\pm} / \tilde{\chi}_2^0 \\ \tilde{\chi}_1^{\pm} / \tilde{\chi}_2^0 \end{array}$ $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0, \tilde{\chi}_1^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}), \tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu})$ 2τ Yes 36.1 0.76 $m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ EW 0.22 $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$ $2e,\mu$ 0 Yes 36.1 0.5 $m(\tilde{\chi}_{1}^{0})=0$ $2e,\mu$ 0.18 ≥ 1 Yes 36.1 $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ $\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$ 0 $\geq 3b$ Yes 36.1 0.13-0.23 0.29-0. $BR(\tilde{\chi}_{\perp}^{0} \rightarrow h\tilde{G})=1$ $4e, \mu$ 0 Yes 36.1 $BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=1$ Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Disapp, trk 1 jet Yes 36.1 0.46 Pure Wino 0.15 Pure Higgsino Stable g R-hadron SMP 32 1.6 Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$ Multiple 32.8 $[\tau(\tilde{e}) = 100 \text{ ns}, 0.2 \text{ ns}]$ $m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}$ 24 GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ 2γ Yes 20.3 0.44 $1 < \tau(\tilde{\chi}_1^0) < 3$ ns, SPS8 model $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v$ displ. ee/eµ/µµ 20.3 $6 < c\tau(\tilde{\chi}_1^0) < 1000 \text{ mm}, m(\tilde{\chi}_1^0) = 1 \text{ TeV}$ LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ ец.ет.ит 3.2 =0.11, *λ*_{132/133/233}=0.07 $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$ $4 e, \mu$ 36.1 1.33 m(X₁⁰)=100 GeV 0 Yes $_{33} \neq 0, \lambda_{12k} \neq 0$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$ 4-5 large-R jets 36.1 Large λ_{112}'' 0 00 GeV, 1100 GeV] Multiple 36.1 1 05 20 $m(\tilde{\chi}_1^0)=200$ GeV, bino-like $\tilde{g}\tilde{g}, \tilde{g} \to tbs / \tilde{g} \to t\bar{t}\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to tbs$ Multiple 36.1 1.8 2.1 $m(\tilde{\chi}_1^0)=200 \text{ GeV, bino-like}$ $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$ Multiple 36.1 0.55 1.05 $m(\tilde{\chi}_1^0)=200$ GeV, bino-like $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 0 2 jets + 2 b 36.7 0.61 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bl$ 20.11 36.1 0.4-1.45 $BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$ 2b

 10^{-1}

Compressed spectrum squark degeneracy: squarks O(500 GeV) gluinos O(1 TeV)

Longer decay chain more realistic models: sbottom O(700 GeV) stop O(700 GeV)

Low rate, compressed: winos O(~100 GeV) sleptons O(~100 GeV) higgsino O(~100 GeV)

Complexity, long-lived: gluinos O(1 TeV) stop O(500 GeV)

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs, for the assumptions made.

 $_{\mathbf{x}}$ Simplified signatures covered to high masses, but plenty of low mass unexplored model space.

Mass scale [TeV]

Heavy Ion Data-set

System	Year(s)	√s _{NN} (TeV)	L _{int}	
	2010-2011	2.76	~75 µb⁻¹	
Pb-Pb	2015	5.02	~250 µb⁻¹	
	by end of 2018	5.02	~1 nb ⁻¹	
Xe-Xe	2017	5.44	~0.3 µb⁻¹	
n Dh	2013	5.02	~15 nb ⁻¹	
p-pp	2016	5.02, 8.16	~3 nb⁻¹, ~25 nb⁻¹	
	2009-2013	0.9, 2.76, 7, 8	~200 μb ⁻¹ , ~100 nb ⁻¹ , ~1.5 pb ⁻¹ , ~2.5 pb ⁻¹	
рр	2015,2017	5.02	~1.3 pb ⁻¹	
	2015-2017	13	~25 pb⁻¹	

Special data-sets: p-p, Xe-Xe, p-Pb, Pb-Pb collisions.

6h Xe-Xe run in 2017

Significant increase in luminosity to study rare processes more and more precisely. LHC scheduled: 3.5 week of Pb-Pb collision in November 2018.

Strange particle yields in pp, Xe-Xe, Pb-Pb

Alice detector with impressive particle-ID capabilities

Anisotropic flow in Xe-Xe collisions

Elliptic flow:

D-meson suppression in Pb-Pb collisions

arXiv:1804.09083

Charged particle spectra:

Less elliptic flow at high-pt. Strong charged particle suppression at high pt. \rightarrow constrains charm transport in dense nucleonic environment.

Baryon to Meson ratio in pp and p-Pb collisions

Clear increase in Λ /D-meson towards pt ~ 3 GeV (similar to Λ /Kaon and p/pi).

This specific effect in baryon formation is difficult to describe with pQCD+fragmentation.

Parton energy loss in jets

Soft-drop jet substructure grooming:

e.g.: declustering: "peel apart" the shower

Result shown for dR>0.2: suppression of symmetric splittings. Soft drop mass also used by ATLAS and CMS to characterize internal jet substructure.

Conclusions

ATLAS 13 TeV data analysis is in full swing. 13 results with 80 fb⁻¹ (2015-2017 data).

Important new Higgs physics results:

- $H \rightarrow bb$ observation. Main Higgs decays are now observed.
- Direct observation of Higgs coupling to top quark (via ttH).
- \rightarrow Yukawa coupling to fermions confirmed (ttH, H \rightarrow bb, H \rightarrow $\tau\tau$)
- VH production observed. All major Higgs production modes observed.

Observation of electro-weak processes with dominant vector boson scattering: Same-sign WWjj and WZjj production.

 \rightarrow Important test of SM electro-weak sector.

New electro-weak mixing angle measurement with precision of 0.15%.

Top pairs: Indication for stronger top spin correlation than expected by NLO QCD.

Extensive and active search program for full run-2 (>150 fb⁻¹ achievable). New directions looking at more refined signatures.

ALICE:

Heavy-ion collisions: understanding the properties of QCD matter:

- Azimuthal anisotropies: Xe-Xe results confirm understanding of expanding QGP, viscosity
- Charm, jets probe the QGP with partons: Quantitative understanding of charm transport and QCD bremsstrahlung progressing.

Back-up

WZ cross-section and polarization

Electroweak production of WZ boson pp \rightarrow W⁺⁻Z:

Total fiducial cross section: σ_{EW} (WZ) = 63.7 +- 2.9 fb NNLO (Matrix): 61.5 +- 1.4 fb

→ good agreement inclusive and differential cross-sections

In WZ production:

1) Evidence of longitudinally W polarization (f_0)

2) Measurement of Z polarization

Longitudinal W-polarisation:

4.2σ (3.8σ) obs (exp)

ATLAS-CONF-2018-034

Compatible with NLO QCD and LO EW (Powheg)

Identified particle spectra in Pb-Pb collisions

Alice detector with impressive particle-ID capabilities.

Particle spectra: pions, kaons, protons, Phis, Omegas, deuterons...

Examples:

80-90%

0-5%

Hyper-triton lifetime

ALICE Hyper-triton: Hyper-nucleus formed by proton, neutron and Lambda

 ${}^{3}_{\Lambda}$ H: pn Λ bound state

Live time agrees with the free lambda live time (expected since hyper-triton is loosely bound). Resolution of hyper-triton live time puzzle.

Heavy ion collisions as a laboratory for strange/exotic nuclei.

Tests of advanced tt \rightarrow WW bb calculation

Wt and tt processes have same final state at NLO QCI $|\mathcal{A}_{WWbb}|^2 \sim |\mathcal{A}^{(Wtb)}|^2 + |\mathcal{A}^{(t\overline{t})}|^2$ $g = -\frac{W^+}{2\mathcal{R}\{\mathcal{A}^{(Wtb)}\mathcal{A}^{(t\overline{t})}\}}$

So far, tops produce stable and decayed (narrow width approximation) Systematic handled ttbar/Wt interference DR: tt removed at amplitude level DS: tt removed at cross-section level

New calculation $p p \rightarrow W W b \overline{b}$ (full matrix element)

 $m_{b\ell}^{\text{minimax}} \equiv \min\{\max(m_{b_1\ell_1}, m_{b_2\ell_2}), \max(m_{b_1\ell_2}, m_{b_2\ell_1})\}$

Top final state modeling progress

 $rac{1}{\sigma_{t\bar{t}}}rac{d\sigma_{t\bar{t}}}{dN_{b-jet}}$

10

tt+bb cross-section

eu channel

 \geq 2 *b*-jets

ATLAS-CONF-2018-029

ATLAS Preliminary

√s=13 TeV, 36.1 fb⁻¹

Since several years ATLAS has measured fiducial cross-sections defined using the particles entering the detector. Indispensable for the tuning of modern ME(2->n)+PS MC simulations.

ttbb cross-section measurement

Generator	Process	Matching	Tune	Use
Powheg-Box v2 + Pythia 8.210	$t\bar{t}$ NLO	Powheg h _{damp} =1.5 m _t	A14	nom.
MadGraph5_aMC@NLO + Pythia 8.210	$t\bar{t} + V/H$ NLO	MC@NLO	A14	nom.
Powheg-Box v2 + Pythia 8.210 RadLo	tī NLO	Powheg $h_{damp}=1.5 \text{ m}_t$	A14Var3cDown	syst.
Powheg-Box v2 + Pythia 8.210 RadHi	tī NLO	Powheg $h_{damp}=3.0 \text{ m}_t$	A14Var3cUp	syst.
Powheg-Box v2 + Herwig 7.01	tī NLO	Powheg $h_{damp}=1.5 \text{ m}_t$	H7UE	syst.
Sherpa 2.2.1	tī +1jet NLO +3 jets LO	MC@NLO	Sherpa	syst.
Sherpa 2.2.1	tī bb NLO	NLO tībb	Sherpa	comp.
MadGraph5_aMC@NLO + Pythia 8.210	tī NLO	MC@NLO	A14	comp.
Powhel + Pythia 8.210	tī bb NLO	NLO tībb	A14	comp.

Spin correlation in top pair events

ATLAS-CONF-2018-027

Generator	inclusive
f _{SM} values	
Powheg + Pythia 8	1.25
Powheg + Pythia 8 (2.0 μ_F , 2.0 μ_R)	1.29
Powheg + Pythia 8 (0.5 μ_F , 0.5 μ_R)	1.18
POWHEG + PYTHIA 8 (PDF variations)	1.26
Powheg + Pythia 8 RadLo tune	1.29
Powheg + Herwig7	1.32
MadGraph5_aMC@NLO + Pythia8	1.20

Table 3: Summary of the extracted spin correl

Parton-level $\Delta \phi(I^{\dagger}, \overline{I})/\pi$ [rad/ π]

Measurements overview

Standard Model Total Production Cross Section Measurements status: June 2018

Measurements of weak mixing angle

Polarized Drell-Yann cross-section pp $\rightarrow Z \rightarrow II$ can be expanded as sum of 9 harmonic polynomials

$$\frac{d\sigma}{dp_{T}^{\ell\ell} dy^{\ell\ell} dm^{\ell\ell} d\cos\theta d\phi} = \underbrace{\frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_{T}^{\ell\ell} dy^{\ell\ell} dm^{\ell\ell}}}_{\substack{1 + \cos^{2}\theta + \frac{1}{2} A_{0}(1 - 3\cos^{2}\theta) + A_{1} \sin 2\theta \cos\phi}} unpolarized$$

$$A_{a} \text{ non-zero in LO}$$

$$A_{0} - A_{3} \text{ non-zero only in NLO}$$

$$A_{5} - A7 \text{ non-zero only in NNLO}$$

$$A_{5} - A7 \text{ non-zero only in NNLO}$$

$$A_{1} - A_{2} \sin^{2}\theta \cos^{2}\theta + A_{3} \sin\theta \cos\phi + A_{4} \cos\theta$$

$$A_{3} \text{ and } A_{4} \text{ depend on vector and axial}$$

$$A_{3} \text{ and } A_{4} \text{ depend on vector and axial}$$

$$A_{5} \sin^{2}\theta \sin^{2}\theta + A_{6} \sin^{2}\theta \sin\phi + A_{7} \sin\theta \sin\phi$$

$$A_{1} \text{ non-zero only in NLO}$$

 A_4 sensitive to weak mixing angle 3/8 $A_4 \sim \sin^2 \theta_w$ Measurement for $|\eta| < 2.4$ (cc) and with one electron in forward region 2.5< $|\eta| < 4.6$ (cf)

 A_{A} is parity violating, best sensitivity at Z-pole

Limitation by radiation of initial state quarks \rightarrow large systematics from PDFs

PDF set	CT10	CT14	MMHT14	NNPDF31
Central value	0.23118	0.23141	0.23140	0.23146
	Uncertainties in measurements			
Total	40	37	36	38
Stat.	21	21	21	21
Syst. 32		31	29	31

Final uncertainty from PDF spread

40

21

31

Result also compatible with reinterpretation of recent triple-differential Drell-Yan cross-section measurement.

Final uncertainty from PDF spread. CT10 considered since it fits best the 7 TeV Drell-Yan data.

21

31

21

29

Stat.

Syst.

21

32

Search for dark matter at LHC

Search for dark matter at LHC

Dijet resonance search

arXiv:1804.03496

plots

Search for electroweak SUSY particles

December 2017 50 $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$ [GeV 2ℓ compressed, SUSY-2016-25, $m(\tilde{\chi}_2^0) = m(\tilde{\chi}_1^0) + 2\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$ p W^* Disappearing track, PUB-SUSY-2017-01, $m(\tilde{\chi}_2^0) = m(\tilde{\chi}_1^0)$ LEP2 $\tilde{\chi}_1^{\pm}$ excluded 20 Theoretical prediction for pure Higgsino 10 p5 2ℓ compressed **ATLAS** Preliminary Soft $p_{\rm T}^{e,\mu} > 4.5, 4 \,{\rm GeV}$ 2 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ [1712.08119] $pp \rightarrow \tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{0}$ (Higgsino) All limits at 95% CL Observed limits 0.5 pExpected limits 0.2 80 100 120 140 160 180 200 $\tilde{\chi}_1^0$ $m(\tilde{\chi}_1^{\pm})$ [GeV] p π^{\pm} ATLAS Simulation π^+ **Disappearing track IBL+Pixel tracklets** [PHYS-PUB-2017-019] [CONF-2017-081]

ttH event candidate

ttH event candidate

ttH four lepton event candidate

Event display of the 4µ VH-Had candidate with the with BDTVH-Had = 0.47. The invariant mass of the 4-lepton system is 128.2 GeV, the muons are indicated by red tracks (pT = 103.7, 16.9, 16.4 and 15.4 GeV). The two jets, with an invariant mass of 96.2 GeV, are marked with purple cones (pT,j1 = 64.9 GeV and pT,j2 =

ATL-PHYS-PUB-2018-007

Four muon event

Two Z->mm events superimposed. With high LHC luminosity starts to matter even for rare processes. 49

r mai state	Number of observed events	Number of expected events
$e^{+}e^{-}e^{+}e^{-}$	2	2.1
$\mu^+\mu^-e^+e^-$	6	6.6
$\mu^+\mu^-\mu^+\mu^-$	5	5.4
Sum over all channels	13	14.1

Four lepton event

Coupling fits in H→bb analysis

ttH production cross-section

June 2018 update: ttH $\rightarrow \gamma\gamma$ and tt(ZZ \rightarrow 4l) with **80 fb⁻¹**

arXiv:1806.00425

at 8 TeV: $sigma_{ttH} = 220 \pm 100(stat) \pm 70(syst)$ at 13 TeV: $sigma_{ttH} = 670 \pm 90(stat) \pm 105(syst)$ ttH cross-section per production modes

Already 20% precision !

Coupling ratios in Kappa-framework

Parameter	Definition in terms of κ modifiers	Result
ĸ _{gZ}	$\kappa_g \kappa_Z / \kappa_H$	1.06 ± 0.07
λ_{tg}	κ_t / κ_g	$1.09^{+0.14}_{-0.14}$
λ_{Zg}	κ_Z/κ_g	$1.06^{+0.14}_{-0.13}$
λ_{WZ}	κ_W/κ_Z	$0.99^{+0.09}_{-0.08}$
$\lambda_{\gamma Z}$	κ_{γ}/κ_Z	$0.95^{+0.08}_{-0.07}$
$\lambda_{\tau Z}$	κ_{τ}/κ_{Z}	0.95 ± 0.13
λ_{bZ}	κ_b/κ_Z	$0.91^{+0.17}_{-0.16}$

$H \rightarrow WW$

$$\mu_{\text{ggF}} = 1.21^{+0.12}_{-0.11}(\text{stat.})^{+0.18}_{-0.17}(\text{sys.}) = 1.21^{+0.22}_{-0.21}$$

$$\mu_{\text{VBF}} = 0.62^{+0.30}_{-0.28}(\text{stat.}) \pm 0.22(\text{sys.}) = 0.62^{+0.37}_{-0.36}.$$

Cross-section measurement for H->ττ

Mass distributions in H->ττ VBF categories

Mass distributions in H->ττ boosted categories

Search summary

ATLAS Preliminary

 $\sqrt{s} = 8, 13 \text{ TeV}$

 $\int \mathcal{L} dt = (3.2 - 37.0) \text{ fb}^{-1}$

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2017

	Model	ℓ,γ	Jets†	E ^{miss} T	∫£ dt[fb	-1]	Limit			Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq$ 2UED / RPP	$0 e, \mu$ 2γ $-$ $2 1 e, \mu$ $-$ 2γ $v \qquad 1 e, \mu$ $1 e, \mu$	$1 - 4j$ $- 2j$ $\geq 2j$ $\geq 3j$ $- 1J$ $\geq 2b, \geq 3$	Yes - - - Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 13.2	M _D Ms Mth Mth Mth GKK mass GKK mass KK mass	1.75 TeV 1.6 TeV	7.75 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 4.1 TeV	$\begin{split} n &= 2\\ n &= 3 \text{ HLZ NLO}\\ n &= 6\\ n &= 6, M_D = 3 \text{ TeV, rot BH}\\ n &= 6, M_D = 3 \text{ TeV, rot BH}\\ k/\overline{M}_{PI} &= 0.1\\ k/\overline{M}_{PI} &= 1.0\\ \text{Tier} (1,1), \mathscr{B}(A^{(1,1)} \rightarrow tt) = 1 \end{split}$	ATLAS-CONF-2017-060 CERN-EP-2017-132 1703.09217 1606.02265 1512.02586 CERN-EP-2017-132 ATLAS-CONF-2017-051 ATLAS-CONF-2016-104
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{Leptophobic}\; Z' \to bb \\ \mathrm{Leptophobic}\; Z' \to tt \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{HVT}\; V' \to WV \to qqqq \ \mathrm{mo} \\ \mathrm{HVT}\; V' \to WH/ZH \ \mathrm{model}\; \mathrm{E} \\ \mathrm{LRSM}\; W'_R \to tb \\ \mathrm{LRSM}\; W'_R \to tb \end{array}$	$2 e, \mu$ 2τ $-$ $1 e, \mu$ $1 e, \mu$ $del B 0 e, \mu$ $multi-channe$ $1 e, \mu$ $0 e, \mu$	- 2 b ≥ 1 b, ≥ 1J - 2 J el 2 b, 0-1 j ≥ 1 b, 1 s	- - /2j Yes Yes - Yes J -	36.1 36.1 3.2 3.2 36.1 36.7 36.1 20.3 20.3	Z' mass Z' mass Z' mass Z' mass W' mass V' mass W' mass W' mass	2.4 1.5 TeV 2.0 TeV 2.0 TeV 1.92 TeV 1.76 TeV	4.5 TeV TeV 5.1 TeV 3.5 TeV 93 TeV	$\Gamma/m = 3\%$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2017-027 ATLAS-CONF-2017-050 1603.08791 ATLAS-CONF-2016-014 1706.04786 CERN-EP-2017-147 ATLAS-CONF-2017-055 1410.4103 1408.0886
CI	Cl qqqq Cl ℓℓqq Cl uutt	– 2 e, µ 2(SS)/≥3 e,,	2 j µ ≥1 b, ≥1	– – j Yes	37.0 36.1 20.3	Λ Λ Λ		4.9 TeV	21.8 TeV η _{LL} 40.1 TeV η _{LL} C _{RR} = 1	1703.09217 ATLAS-CONF-2017-027 1504.04605
DM	Axial-vector mediator (Dirac Vector mediator (Dirac DM) $VV_{\chi\chi}$ EFT (Dirac DM)	DM) 0 e, μ 0 e, μ, 1 γ 0 e, μ	1 - 4 j $\leq 1 j$ $1 J, \leq 1 j$	Yes Yes Yes	36.1 36.1 3.2	m _{med} m _{med} M _s	1.5 TeV 1.2 TeV 700 GeV		$\begin{array}{l} g_q\!=\!0.25,g_\chi\!=\!1.0,m(\chi)<400~{\rm GeV}\\ g_q\!=\!0.25,g_\chi\!=\!1.0,m(\chi)<480~{\rm GeV}\\ m(\chi)<150~{\rm GeV} \end{array}$	ATLAS-CONF-2017-060 1704.03848 1608.02372
ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3	– – j Yes	3.2 3.2 20.3	LQ mass LQ mass LQ mass	1.1 TeV 1.05 TeV 640 GeV		$egin{array}{lll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 0 \end{array}$	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ TT \rightarrow Zt + X \\ VLQ \ TT \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Wt + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	0 or 1 e, µ 1 e, µ 1 e, µ 2/≥3 e, µ 1 e, µ 1 e, µ	$\begin{array}{l} \geq 2 \ b, \geq 3 \\ \geq 1 \ b, \geq 3 \\ \geq 1 \ b, \geq 1J \\ \geq 2 \ b, \geq 3 \\ \geq 2/ \geq 1 \ b \\ \geq 1/ \geq 1 \ b \\ \geq 1/ \geq 1 \ b \\ \geq 4 \ j \end{array}$	j Yes j Yes /2j Yes j Yes - /2j Yes Yes	13.2 36.1 36.1 20.3 20.3 36.1 20.3	T mass T mass T mass B mass B mass B mass Q mass	1.2 TeV 1.16 TeV 1.35 TeV 700 GeV 790 GeV 1.25 TeV 690 GeV		$\begin{split} \mathcal{B}(T \to Ht) &= 1\\ \mathcal{B}(T \to Zt) &= 1\\ \mathcal{B}(T \to Wb) &= 1\\ \mathcal{B}(B \to Hb) &= 1\\ \mathcal{B}(B \to Zb) &= 1\\ \mathcal{B}(B \to Wt) &= 1 \end{split}$	ATLAS-CONF-2016-104 1705.10751 CERN-EP-2017-094 1505.04306 1409.5500 CERN-EP-2017-094 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j 1 b, 2-0 j –	- - Yes -	37.0 36.7 13.3 20.3 20.3 20.3	q* mass g* mass b* mass b* mass ν* mass	2.3 1 1.5 TeV 1.6 TeV	6.0 TeV 5.3 TeV eV 3.0 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 CERN-EP-2017-148 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$2 e, \mu$ 2,3,4 e, μ (SS 3 e, μ, τ 1 e, μ - -	2 j 5) _ 1 b - - √s = 1	- - Yes - - 3 TeV	20.3 36.1 20.3 20.3 20.3 7.0	Nº mass H ^{±±} mass H ^{±±} mass spin-1 invisible particle mass multi-charged particle mass monopole mass 10 ⁻¹	2.0 Te 870 GeV 657 GeV 785 GeV 1.34 TeV	• • • • • • • • • • •	$m(W_R) = 2.4 \text{ TeV, no mixing}$ DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1$ $a_{non-res} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	1506.06020 ATLAS-CONF-2017-053 1411.2921 1410.5404 1504.04188 1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Vector-like Quark summary

