Future Neutrino Experiments; DUNE & Hyper–K

XXXIX ICHEP

COEX, Seoul, Korea

July 8, 2018

Jaehoon Yu

Department of Physics

University of Texas at Arlington

Outline

- Introduction
- DUNE and Hyper K, the next generation v experiments
- Physics Potential
- Status and Schedule of the experiments
- Conclusions

In the Past Quarter Century

Observation of The Top Quark

Higgs-like Scalar Boson Discovery

Neutrino oscillation discovery

Physics Motivation

- The neutrino sector in the Standard Model needs a fix, so
 - Precision measurements of the oscillation parameters
 - Mixing angles and mass hierarchy
 - Studying the CPV and precisely measuring the CP phase
 - Do neutrinos and anti-neutrinos oscillate the same way?
- These could lead to a new symmetry
- The question of the grand unification
 - Energy scale of the unification and nucleon decay
- Understanding neutrinos of astrophysical origin
 - Supernova, relic neutrinos, dark matter, etc
- These require high statistics samples
 - Large volume and highly capable (near and far!) detectors
 - High intensity neutrino beam facility with a long baseline

Current Understanding of v Oscillation

- \Box θ_{23} & ΔM^2_{23} measurements
 - Atm. v: SK, IceCube, Km³NET, etc
 - Long Baseline: K2K, MINOS, Opera, NOvA, etc
- \Box θ_{12} & ΔM^2_{12} measurements
 - Solar v: SNO, SK, Borexino, etc
 - Reactor: KamLAND
- \Box θ_{13} measurements
 - Long Baseline: MINOS, T2K, NOvA, etc
 - Reactor: Daya Bay, RENO,
 Double Chooz

The Next Generation v Experiment – I

 With the 2013 strategic planning of the community in the three regions, the efforts of building two large scale neutrino experiments progressed in earnest

 The Hyper Kamiokande, T2HK and T2HKK

- Joint efforts of the teams from all three regions at Kamioka
- Water Cerenkov → Proven technology!
- ~300 members, 74 institutions from 14 countries in the protocollaboration
- Supported JPY 10M from MEXT this year for fundamental studies
- Recently released the design report

Mt. Ikeno-yama 1000 m

SK

Maruyama

Excavated rock

disposal site

Mt. Nijyugo-yama

Entrance

The Next Generation v Experiment – II

- The Deep Underground Neutrino Experiment (DUNE)
 - Joint efforts of teams from all three regions – Americas, Europe and Asia – hosted by Fermilab in the US
 - 1132 members, 179 institutions from 32 countries
 - LAr TPC → Employ two technologies (SP/DP) within one experiment, systematic x-check
 - LBNF (Long Baseline Neutrino Facility) far site facility construction approved by US DOE in Sept. 2016 → Ground breaking at the far site July 2017

Anatomy of DUNE Experiment

LBNF Far Detector Site, SURF

1500m underground

Long Baseline Neutrino Facility (LBNF)

- LBNF Consists of two elements
 - Far detector site: Sanford
 Underground Research Facility
 (SURF) in South Dakota
 - Neutrino Beam Line at Fermilab
 - $E_p = 60 120 \text{ GeV}$
 - 1.2MW upgradable to 2,4MW
 - Horn focused beam optimized for CPV studies → Provides access to two oscillation maxima

NG v Experiments – Financial Supports

- Hyper K supported with 10M JPY
- DUNE funding support highlights
 - US DOE
 - LBNF SURF facility cavern excavation fully approved
 - LBNF v Beam facility to be approved shortly
 - Accelerator improvement plan strongly supported!
 - Detector construction for prototyping in progress

- CERN

- Constructed Neutrino Platform in North area extension
- Built 2 ProtoDUNE cryostats & currently committed to build one DUNE Cryostat (1st meeting with the GTT last week!)
- Playing leadership role in installation of the prototypes
- UK has agreed in sept. 2017 to award \$88M project grant for DUNE

DUNE and Hyper-K Facility

	DUNE	HK/T2HK	T2HKK
FD Technology & Fiducial Mass	LArTPC (2+1+1) x10kt	Water Cerenkov (1+1) x187kt	Water Cerenkov 187kt (Kamioka) + 187kt (Korea)
Proton Beam power	1.2MW → 2.4MW	1.3MW	
Proton Energy (GeV)	60 – 120	30	
Baseline (km)	1300	297	1100
FD Depth (m)	1500	650	1120
ND from v target (m)	575	280	

Hyper-K Design Report arXiv:1805.04163 DUNE Conceptual Design Report (CDR) arXiv:1512.06148

T2HK Oscillation Expectation

July 9, 2018

DUNE Oscillation Expectation

DUNE Conceptual Design Report (CDR) arXiv:1512.06148

Physics Reach, CPV

Hyper-K Design Report arXiv:1805.04163

DUNE Conceptual Design Report (CDR) arXiv:1512.06148

Width of the band indicates variation in possible central values of θ_{23} HK& DUNE, Jae Yu

Physics Reach, Mass Hierarchy

DUNE Conceptual Design Report (CDR) arXiv:1512.06148

July 9, 2018

Hyper-K Design Report arXiv:1805.04163

Hyper-K Design Report arXiv:1805.04163

SNB Neutrinos

Observation of early time development yields sensitivity to neutrino mass ordering and details of SNB model.

BSM Physics at a v Experiment?

- The high beam power, large detector mass + highly capable detectors make other BSM Physics viable
 - Low mass Dark Matter
 - **Boosted Dark Matter**
 - Sterile neutrinos
 - Non-standard Interactions, Non-Unitarity Mixing, CPT violation
 - Neutrino Trident
 - Large Extra Dimensions
- Promote close collaborations between phenomenology community and experimentalists

DUNE Single & Dual Phase Prototypes

Enabled by CERN Neutrino Platform

Dual Phase: Single Phase: LAr Anode 0V 2 mm Collection field 5 kV/cm

DUNE Prototype Detectors Today

- SP ProtoDUNE cryostat closed and final detector button up in progress
 - Purge begins any day, cooldown and fill by Aug. 31, 2018→ Ready for beam in Sept.
- DP ProtoDUNE FC completed & 1st detection plane in cold box testing
 - To close the cryostat Oct. and ready for cosmic data early 2019

DUNE and Hyper-K Timeline

	DUNE	Hyper-K
Cavern Excavation	2018 – 2020	2019 – 2024
FD Construction	2022 – 2024	2024 – 2025
FD Fill	2024 – 2025 (10+10kt V _A)	2025 – 2026 (187kt V _A)
Data Taking	2025 (cosmic) / 2026 (v beam)	2026
ND Ready	2027	In place

Conclusions!

- The neutrino sector in SM needs to be modified
- Precise understanding of neutrino oscillation phenomena and CPV in lepton sector is essential
- Two complementary next generation LBN experiments (HK & DUNE) with large v target mass and high power beams as well as precision capabilities are in preparation to accomplish this
- Hyper K recognized as the priority project by Japan's MEXT and is eagerly awaiting Japanese government approval
- DUNE garners strong financial commitments from US, UK, CERN others → FD site construction fully funded and began in 2017
- Two large, scalable DUNE prototypes to start taking data in 2018
- Construction schedules target beam data in 2026 for both

July 9, 2018

In the Next Quarter Century

Discovery of CPV in v Sector

A new theoretical framework!

Discovery of Supersymmetric Particles

Observation of Dark Matter

