

a review of the results from the LHC experiments

ICHEP2018, Seoul, 10 July 2018

Sara Strandberg

Stockholm University

on behalf of the ATLAS, CMS and LHCb Collaborations

Why SUSY?

experiments

Ĭ

the

from

results

Φ

Ę

Ъ О

review

ന

USY

- SUSY has the potential to
 - provide a dark matter candidate;
 - unify the forces at high energy;
 - solve the fine-tuning problem of the Higgs mass.
- Only problem with SUSY is that we have not found it yet.
- Still many places for SUSY to hide.
 - \rightarrow Our job to keep searching.
- Broad search program to ensure that we get the most out of the LHC data.
- And we are getting a lot of data!
- Most results presented today with the 36 fb⁻¹ of 2015-2016 data.
- Some results use the 80 fb⁻¹ of 2015-2017 data.

CMS Integrated Luminosity, pp

SUSY search program at the LHC

- Huge set of scenarios and final states covered.
 - Strong production.
 - Electroweak production.
 - R-parity conserved and violated.
- Driven by simplified models.
 - Masses of non-relevant SUSY particles put very high.
 - 100% BR to single final state.
- Simplified models for modeldependent exclusion limits.
- Check coverage in large pMSSM scans.
- Model-independent upper limits, HEP data, ...

Selection

- Strategy: General overview, then new results.
- Disclaimer: Personal and biased selection of results.
- Please see links below for more complete picture.
- ATLAS Public SUSY Results:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

• CMS Public SUSY Results:

http://cms-results.web.cern.ch/cms-results/public-results/publications/SUS/

• LHCb Public Exotica Results:

http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Sum mary_QEE.html

- Many detailed SUSY talks in parallel sessions (see next slide).
- Also many great SUSY posters.

Parallel Session Talks

- Searches for strongly-produced SUSY at CMS (Ana Ovcharova) [Link]
- Searches for squarks and gluinos in final states involving dark matter candidates with ATLAS (Hernan Wahlberg) [Link]
- Searches for direct pair production of stops and sbottoms with the ATLAS detector (Giacomo Polesello) [Link]
- Searches for SUSY with boosted objects at CMS (Rishi Gautam Patel) [Link]
- Searches for electroweak production of supersymmetric particles involving the Higgs boson and the higgsino with ATLAS (Anyes Taffard) [Link]
- Searches for sleptons with the ATLAS detector (Margherita Primavera) [Link]
- Searches for electroweakly produced supersymmetry with CMS (Valentina Dutta) [Link]
- Searches for electroweak production of supersymmetric gauginos and sleptons at LHC (Zinonas Zinonos) [Link]
- Searches for long-lived particles and other non-conventional signatures at CMS (Alberto Escalante Del Valle) [Link]
- Search for New Physics through the Reconstruction of Challenging Signatures with the ATLAS detector (Marianna Testa) [Link]
- Reconstruction techniques in supersymmetry searches in the ATLAS experiment (Mark Hodgkinson) [Link]
- Searches for Long Lived Particles at LHCb (Carlos Vazquez Sierra)[Link]

Searches for squarks and gluinos

- Strongly produced \rightarrow largest cross sections.
- $p_{p}^{p} \xrightarrow{\tilde{q}}_{\tilde{q}^{*}} \xrightarrow$

Searches for squarks and gluinos

Searches for squarks and gluinos

Gluino pair production

9

Special focus on heavy neutralino scenarios and more complex decay chains.

Photon, lepton and p_{T}^{miss}

- Target scenarios with neutralino NLSP and gravitino LSP. CMS-PAS-SUS-17-012
- Final states with a photon, an electron or muon and large p_{τ}^{miss} .
- Bin data in p_{τ}^{γ} , p_{τ}^{miss} and H_{τ} .
- Excludes gluinos (squarks) with masses of up to 1700 (1400) GeV.

Leptons and E^{miss}

11

experi

Φ

results

JO

eview

- Same-flavour opposite-sign dilepton pairs and E^{miss} (Z mass or edge).
- Reach compressed scenarios using low- p_{τ} (> 7 GeV) leptons.
- Excess in Run 1 not confirmed.
- One or two hadronically decaying tau leptons.
- Target scenarios with neutralino LSP as well as neutralino NLSP and gravitino LSP.
- Limits on gluino mass reach 2 TeV for light neutralino LSP.

1805.11381 35 50 GeV ATLAS 30 √s = 13 TeV, 36.1 fb⁻¹ SR-medium, ee+µµ Events / 25 Data Ht Standard Model (SM) 20 ---- SUSY Z (1640,1160) – SUSY slepton (1600,900)-WZ/ZZ 15 ℓ/ν Z+jets (γ +jets)]Other 10 Flavour Symmetric 100 200 400 500 300 600 SUSY-2016-030 m_[GeV] $\widetilde{g} - \widetilde{g}; \widetilde{g} \rightarrow q \overline{q} \widetilde{\chi}^0_{\circ}, \widetilde{\chi}^0_{\circ} \rightarrow \widetilde{l}^{\pm} l^{\mp}, \widetilde{l}^{\pm} \rightarrow l^{\pm} \widetilde{\chi}^0_{\circ}; m(\widetilde{\chi}^0_{\circ}) = (m(\widetilde{g}) + m(\widetilde{\chi}^0_{\circ}))/2; m(\widetilde{l}) = (m(\widetilde{\chi}^0_{\circ}) + m(\widetilde{\chi}^0_{\circ}))/2$ 300 г m(χ̃,) [GeV] ATLAS . (s=13 TeV, 36.1 fb⁻¹ 250 Low-p_ Best Expected Combination n(ĝ) Expected limit ($\pm 1 \sigma_{exp}$) 200 Observed limit ($\pm 1 \sigma_{\text{theory}}^{\text{SUSY}}$ Observed limit (High-p_) 150 Expected limit (High-p_) 1805.1138 100 50 1100 1200 1300 1400 1500 1600 800 900 1000

m(g) [GeV]

Searches for sbottom and stop

- Light stops needed for natural SUSY.
- Large mixing (heavy top) favours light stop.

p

p

Searches for sbottom and stop

- Light stops needed for natural SUSY.
- Large mixing (heavy top) favours light stop.
- 0/1/2 leptons, (b) jets and $E_{\scriptscriptstyle T}^{miss}.$

Searches for sbottom and stop

- Large mixing (heavy top) favours light stop.
- 0/1/2 leptons, (b) jets and E_{τ}^{miss}

0.43

 \boldsymbol{v}

36.1

36.1

36.1

36.1

36.1

36.1

36.1

36.1

36.1

36.1

36.1

 \tilde{t}_1

 Limits on sbottom and stop masses reach beyond 1 TeV in most favourable scenarios.

0.32-0.88

IMS

 $pp \rightarrow tt.t$

pp →t t ,t

pp →tt,t

Squark

Sbottom and stop production

15

Ū

e<

S

Stop in compressed scenarios

Searches for EW processes

17

experiments

Ĭ

the

from

results

the

J O

review

ത

SUSY

• Low cross sections \rightarrow particularly relevant if squarks and gluinos are heavy.

Chargino/neutralino production

chargino track

 \tilde{g} Higgsinos expected to be light in natural SUSY since mass controlled by μ . \tilde{t}_L \tilde{t}_R • If LSP is purely Higgsino, mass splitting b_L can be as small as 0(100 MeV). $\tilde{\chi}_2^0$ $\tilde{\chi}_1^{\pm}$ March 2018 $\Delta m(ilde{\chi}_1^\pm, ilde{\chi}_1^0)$ [GeV] 50 2ℓ compressed, arXiv:1712.08119, $m(\tilde{\chi}_2^0) = m(\tilde{\chi}_1^0) + 2\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$ Disappearing track, PHYS-PUB-2017-019, $m(\tilde{\chi}_2^0) = m(\tilde{\chi}_1^0)$ natural SUSY LEP2 $\tilde{\chi}_{1}^{\pm}$ excluded 20 Theoretical prediction for pure Higgsino q10 712.08119 p5 soft leptons **ATLAS** Preliminary 2 \sqrt{s} = 13 TeV, 36.1 fb⁻¹ $pp \rightarrow \tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{0}$ (Higgsino) soft leptons All limits at 95% CL Observed limits 0.5 Expected limits disappearing tracks p0.2 80 180 200 100 120 140 160 1712.02118 $m(\tilde{\chi}_1^{\pm})$ [GeV] soft pion \rightarrow Probing territory beyond LEP. disappearing

Chargino/neutralino production

 Search for chargino and neutralino production in final states with two or three charged leptons.

1806.02293

CMS

• 3.0 σ excess in 3 lepton ISR selection (compressed scenarios).

Chargino/neutralino in h decays

- 20
- Search for Zh production with exotic Higgs decays.

- One and two photon final state.
- Background mainly reduced with E_{T}^{miss} cut and variables exploiting the balance of the Z and $\gamma + E_{T}^{miss}$.

ATLAS-CONF-2018-19

- Upper limits at
 - 11% for massless LSP.
 - 18% for massive LSP and NLSP.

 Combination of leptonic and hadronic searches for direct stau production and indirect production via decays of charginos and neutralinos.

• Require two tau leptons.

Stau production

- Stau is expected to be lightest slepton (large mixing).
- Light stau and small Δm can yield right DM relic density via stau-neutralino coannihilation.

Strongest limits achieved when lightest stau is partner of left-handed tau, approaching sensitivity to SUSY models.

results

1

Ч О

eview

Searches for RPV SUSY and LLPs

LLP/RPV reinterpretation

Potential improvements in transition regions.

ATLAS-CONF-2018-003

(666

 $\lambda^{,,}_{323}$

Second generation sleptons

- Search for resonant production of second generation sleptons via RPV coupling.
- Final state with two same-sign muons and at least two jets.

35.9 fb⁻¹ (13 TeV) **CMS** *Preliminary* section (fb) $\widetilde{\mu} \rightarrow \mu \ \widetilde{\chi}^0_1 \rightarrow \mu \ \mu \ u \ d$ 10³ 2500 -observed limit sm1 **Cross** 2000 10² upper limit on 1500 10 1000 500 $\overline{\mathbf{O}}$ 10⁻¹ 95% 1500 2000 2500 3000 500 1000 $m_{\tilde{u}}$ (GeV)

CMS-PAS-SUS-17-008

(GeV)

×° β

Dimuon resonance in the Υ region

1805.09820

Fit PDF

Background

 $gg \to \phi \ (50 \text{ pb})$

 $\Upsilon(nS)$

Data

- Search for a scalar resonance decay to a pair of muons.
- Light scalars can appear e.g. in NMSSM scenarios.
- Target difficult region around Υ (5.5-15 GeV).
- Limits comparable to CMS, but extend closer to the Υ mass.

Candidates/(37.1 MeV

 10^{5}

 10^{4}

LHCb

 $\int \mathcal{L} = 3.0 \, \text{fb}^{-1}$

 $\sqrt{s} = 7,8 \,\mathrm{TeV}$

LLPs decaying semileptonically (1612.00945) and to jets (1705.07332)

Indirect (1703.05747, 1703.02508, 1609.02032, 1712.08606, 1611.07704)

Summary and outlook

- New results at 13 TeV are being produced at a steady pace.
- Completing the program with 36 fb⁻¹ (2015+2016) dataset.
- Start to see first results with 80 fb⁻¹ dataset (2015+2016+2017).
- Vast and versatile search program for SUSY.
- No evidence for SUSY yet \rightarrow strong message from the LHC.
- In most favourable / challenging scenarios we exclude
 - gluinos up to 0(2) / 0(1) TeV.
 - squarks up to 0(1.5) / 0(0.5) TeV.
 - stops and sbottoms up to 0(1) / 0(0.7) TeV.
 - EW produced sparticles up to $\mathcal{O}(0.5-1) / \mathcal{O}(0.1)$ TeV.
- Regions of parameter space still not well covered.
- Next step is to complete the program with the full Run 2 dataset (150 fb⁻¹ expected).
- Ensure we cover all signatures within our reach.

Backup

Summary ATLAS

ATLAS Preliminary

ATLAS SUSY Searches* - 95% CL Lower Limits

July 2018						$\sqrt{s} = 7, 8, 13 \text{ TeV}$					
	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫L dt[fb	⁻¹]	Mass limit		$\sqrt{s} = 7, 8 \text{ T}$	$\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ ilde q ilde q, ilde q ightarrow q ilde \chi_1^0$	0 mono-jet	2-6 jets 1-3 jets	Yes Yes	36.1 36.1	\tilde{q} [2x, 8x Degen.] \tilde{q} [1x, 8x Degen.]	0.43	0.9	1.55	m($ar{\chi}_1^0)$ <100 GeV m($ar{q}$)-m($ar{\chi}_1^0)$ =5 GeV	1712.02332 1711.03301
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0	2-6 jets	Yes	36.1	78 78		Forbidden	2.0 0.95-1.6	${ m m}(ilde{\chi}^0_1){<}200{ m GeV}\ { m m}(ilde{\chi}^0_1){=}900{ m GeV}$	1712.02332 1712.02332
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 e, μ ee, μμ	4 jets 2 jets	- Yes	36.1 36.1	î 26 26			1.85	$m(\tilde{\chi}_{1}^{0})$ <800 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_{1}^{0})$ =50 GeV	1706.03731 1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 З е, µ	7-11 jets 4 jets	Yes	36.1 36.1	ĩg ĩg		0.98	1.8	$m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 200 \text{ GeV}$	1708.02794 1706.03731
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow tt \tilde{\chi}_1^0$	0-1 e,μ 3 e,μ	3 b 4 jets	Yes	36.1 36.1	ĝ ĝ			2.0 1.25	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV}$	1711.01901 1706.03731
3 rd gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple Multiple		36.1 36.1 36.1	$egin{array}{ccc} egin{array}{ccc} eta_1 & For \ eta_1 & ebeta_1 & ebeta_1 & ebeta_1 & ebeta_$	bidden Forbidden Forbidden	0.9 0.58-0.82 0.7	$m(ilde{\chi}^0_1)=$	$\begin{array}{c} m(\tilde{\chi}^0_1){=}300~GeV,~BR(b\tilde{\chi}^0_1){=}1\\ n(\tilde{\chi}^0_1){=}300~GeV,~BR(b\tilde{\chi}^0_1){=}BR(t\tilde{\chi}^\pm_1){=}0.5\\ {:}200~GeV,~m(\tilde{\chi}^\pm_1){=}300~GeV,~BR(t\tilde{\chi}^\pm_1){=}1 \end{array}$	1708.09266, 1711.03301 1708.09266 1706.03731
	$\tilde{b}_1\tilde{b}_1,\tilde{\iota}_1\tilde{\iota}_1,M_2=2\times M_1$		Multiple Multiple		36.1 36.1	$\tilde{\iota}_1$ $\tilde{\iota}_1$ Forbidden		0.7		$m(\tilde{\chi}_{1}^{0})=60 { m GeV} \ m(\tilde{\chi}_{1}^{0})=200 { m GeV}$	1709.04183, 1711.11520, 1708.03247 1709.04183, 1711.11520, 1708.03247
	$\tilde{\iota}_1 \tilde{\iota}_1, \tilde{\iota}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$ $\tilde{\iota}_1 \tilde{\iota}_1, \tilde{H} \text{ LSP}$	0-2 <i>e</i> , <i>µ</i> (0-2 jets/1-2 Multiple Multiple	b Yes	36.1 36.1 36.1		bidden	1.0 0.4-0.9 0.6-0.8	$m(ilde{\mathcal{X}}^0_1)$ = $m(ilde{\mathcal{X}}^0_1)$ =	$m(\tilde{\chi}^{0}_{1})=1 \text{ GeV}$ =150 GeV, $m(\tilde{\chi}^{\pm}_{1})-m(\tilde{\chi}^{0}_{1})=5 \text{ GeV}$, $\tilde{r}_{1} \approx \tilde{r}_{L}$ =300 GeV, $m(\tilde{\chi}^{\pm}_{1})-m(\tilde{\chi}^{0}_{1})=5 \text{ GeV}$, $\tilde{r}_{1} \approx \tilde{r}_{L}$	1506.08616, 1709.04183, 1711.11520 1709.04183, 1711.11520 1709.04183, 1711.11520
	$\tilde{t}_1 \tilde{t}_1$, Well-Tempered LSP		Multiple	N/s -	36.1	\tilde{t}_1		0.48-0.84	$m(\tilde{\chi}_1^0)$ =	=150 GeV, m($\tilde{\chi}_1^{\pm}$)-m($\tilde{\chi}_1^{0}$)=5 GeV, $\tilde{t}_1 \approx \tilde{t}_L$	1709.04183, 1711.11520
	$t_1 t_1, t_1 \rightarrow c \chi_1^\circ / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \chi_1^\circ$	0	2c mono-jet	Yes Yes	36.1 36.1	t_1 \tilde{t}_1 \tilde{t}_1	0.46 0.43	0.85		m(ϟ་̃)=0 GeV m(ĩ̃₁,ਟ̃)-m(ϟ̃¹)=50 GeV m(ĩ₁,ਟ̃)-m(ϟ¹)=5 GeV	1805.01649 1805.01649 1711.03301
	$\tilde{t}_2\tilde{t}_2,\tilde{t}_2{\rightarrow}\tilde{t}_1+h$	1-2 <i>e</i> , <i>µ</i>	4 <i>b</i>	Yes	36.1	ĩ ₂		0.32-0.88		$m(\tilde{\chi}_{1}^{0})=0$ GeV, $m(\tilde{\imath}_{1})-m(\tilde{\chi}_{1}^{0})=180$ GeV	1706.03986
EW direct	${\tilde \chi}_1^\pm {\tilde \chi}_2^0$ via WZ	2-3 e, μ ee, μμ	- ≥ 1	Yes Yes	36.1 36.1	$ \begin{array}{ccc} \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{0}^{0} & & \\ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} & & 0.17 \end{array} $		0.6		$m(\tilde{\chi}_{1}^{\pm})=0$ $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=10 \text{ GeV}$	1403.5294, 1806.02293 1712.08119
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	<i>ℓℓ/ℓγγ/ℓbb</i>	-	Yes	20.3	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ 0.2	26			$m(\tilde{\chi}_{1}^{0})=0$	1501.07110
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}\tau(\nu\tilde{\nu})$	2 τ	-	Yes	36.1	$ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} $ 0.22		0.76	$m(\tilde{\chi}_1^{\pm})\text{-}m(\tilde{\chi}_1^{0})$	$m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\tau}, \tilde{\tau})=0.5(m(\tilde{\chi}_{1}^{+})+m(\tilde{\chi}_{1}^{0}))$)=100 GeV, $m(\tilde{\tau}, \tilde{\tau})=0.5(m(\tilde{\chi}_{1}^{+})+m(\tilde{\chi}_{1}^{0}))$	1708.07875 1708.07875
	$\ell_{\mathrm{L,R}}\ell_{\mathrm{L,R}}, \ell {\rightarrow} \ell \chi_1^{\circ}$	2 e, μ 2 e, μ	0 ≥ 1	Yes Yes	36.1 36.1	<i>ι</i> <i>ι̃</i> 0.18	0.5			$m(\tilde{\ell}_1^0)=0$ $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	1803.02762 1712.08119
	$\tilde{H}\tilde{H}, \; \tilde{H} \rightarrow h\tilde{G} / Z\tilde{G}$	0 4 <i>e</i> , µ	$\geq 3b$ 0	Yes Yes	36.1 36.1	H	0.3	0.29-0.88		$BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1$ $BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1$	1806.04030 1804.03602
Long-lived particles	Direct $\tilde{\chi}_1^+\tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	Yes	36.1	$egin{array}{ccc} ilde{\chi}_1^{\pm} & \ ilde{\chi}_1^{\pm} & \textbf{0.15} \end{array}$	0.46			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
	Stable g R-hadron	SMP	-	-	3.2	ĝ			1.6		1606.05129
	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq\chi_1^{\circ}$ GMSB $\tilde{\chi}_1^0 \rightarrow \chi \tilde{G}$ long-lived $\tilde{\chi}_1^0$	2γ	-	Yes	32.8 20.3	$g [\tau(g) = 100 \text{ ns}, 0.2 \text{ ns}]$ $\tilde{\chi}^{0}_{*}$	0.44		1.6 2	.4 $m(\tilde{\chi}_1)=100 \text{ GeV}$ $1 \le \tau(\tilde{\chi}_1^0) \le 3 \text{ ns. SPS8 model}$	1710.04901, 1604.04520 1409.5542
	$\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\muv/\mu\muv$	displ. ee/eµ/µ	μ -	-	20.3	ĝ			1.3	$6 < c\tau(\tilde{\chi}_1^0) < 1000 \text{ mm}, \text{ m}(\tilde{\chi}_1^0) = 1 \text{ TeV}$	1504.05162
	$LFV\ pp {\rightarrow} \tilde{v}_{\tau} + X, \tilde{v}_{\tau} {\rightarrow} e\mu/e\tau/\mu\tau$	$e\mu,e au,\mu au$	-	-	3.2	$\tilde{\nu}_{\tau}$			1.9	λ'_{311} =0.11, $\lambda_{132/133/233}$ =0.07	1607.08079
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 e, μ	0	Yes	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$		0.82	1.33	$m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1804.03602
RPV	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\chi_1^\circ, \chi_1^\circ \rightarrow qqq$	0 4	-5 large- <i>R</i> ji Multiple	ets -	36.1 36.1	$\tilde{g} = [m(\chi_1'')=200 \text{ GeV}, 1100 \text{ G})$ $\tilde{g} = [\chi_{112}''=2e-4, 2e-5]$	šeV]	1.05	1.3 1.9 5 2.0	Large λ'_{112} m($\tilde{\chi}^0_1$)=200 GeV, bino-like	1804.03568 ATLAS-CONF-2018-003
	$\tilde{g}\tilde{g}, \tilde{g} \to tbs / \tilde{g} \to t\bar{t}\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to tbs$		Multiple		36.1	$\tilde{g} = [\lambda_{323}'' = 1, 1e-2]$			1.8 2.1	m($\tilde{\chi}_1^0$)=200 GeV, bino-like	ATLAS-CONF-2018-003
	$t\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$		Multiple		36.1	\tilde{g} [λ''_{323} =2e-4, 1e-2]	0.5	5 1.05	5	$m(\tilde{\mathcal{X}}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
	$ \begin{array}{l} t_1 t_1, \ t_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \rightarrow b\ell \end{array} $	0 2 e, µ	2 jets + 2 l 2 b	-	36.7 36.1	$ \begin{array}{c} t_1 [qq, bs] \\ \tilde{t}_1 \end{array} $	0.42	0.61	0.4-1.45	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$	1710.07171 1710.05544
*0-1		a liasta s	a avv. al.c.t		4	L			· ·		I
Only	a selection of the available mas	is IIIIIIIS ON I	iew state	s or	1	0			I	Mass scale [TeV]	

SC

28

Only a selection of the available mass limits on new states phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Summary CMS

Estimates of future LHC sensitivity at 95% CL

	~35 ifb 13 TeV	Run2 (140 ifb) 13 TeV	Run3 (~300 ifb) 13/14 TeV	HL-LHC (3000 ifb) 13/14 TeV	
gluino	2 TeV (prel.)	~2.3 TeV (my est.)	2.4 TeV (upgrade), 2.4/2.6 TeV (my est.)	2.9 TeV (upgrade), 2.9/3.1 TeV (my est.)	
squark (x8) decoupled	1.5 TeV (prel.)	1.75 TeV (my est.)	1.9/2.0 TeV (my est.)	2.3/2.4 TeV (my est.)	
stop	1-1.1 TeV (prel.)	~1.3 TeV (my est.)	1.4x TeV (my est.)	1.85 TeV (my est.)	
wino C1N2 to WZ bino	~600 GeV (prel.)	670 GeV (my est.)	780 GeV (my est.), 750 GeV (CMS est.), 840 GeV (upgrade)	1150 GeV (my est.), 1.2 TeV (CMS est.), 1.1 TeV (upgrade)	
wino C1C1 to WW bino	225 GeV (based on x- section ratio for 180 GeV Run1)	~320 GeV (my est.)	380-400 GeV (my est.)	~630 GeV (my est.)	
wino LSP, pixel-trklet	420 GeV (prel.)	580 GeV (my est.)	680 GeV (my est.)	1030 GeV (my est.)	
higgsino LSP, DM=3-20 GeV	150 GeV	200-250 GeV (my est.)	250-300 GeV (my est.)	450-500 GeV (my est.)	
higgsino LSP, DM=0.3-3 GeV	?				
slepton (sel, smu)	~500 GeV (prel.)	670 GeV (my est.)			
stau	?			700 GeV (upgrade)	

ATLAS summary gluino production

ATLAS summary squark production

32

experiments

CH L

from the

results

the

Ч О

review

S S

ATLAS summary RPV-squark prod.

ATLAS summary stop production

ATLAS summary EW production

ന

SUSY

ATLAS summary EW production

ATLAS summary EW production

CMS

LH

CMS summary squark production

CMS summary sbottom production

43

experiments

CH L

the

from

results

the

Ч О

review

ന

SUSY

CMS summary stop prod. 2-body

CMS summary stop prod. 3-body

CMS summary stop prod. 4-body/cN

CMS

CMS summary stop prod. 2/3/4-body

CMS

CMS summary EW

CMS summary EWino comb.

49

experiments

CHC

from the

results

the

Ч О

review

ന

SUSY

CMS summary EWino prod.

CMS summary slepton production

CMS summary EWino prod. (WH)

Gluino pair production

Photon, lepton and p_{τ}^{miss}

Photon, lepton and p_{τ}^{miss}

• Excludes gluinos (squarks) with masses of up to 1700 (1400) GeV.

CMS-PAS-SUS-17-012

Lepton pairs and E_{τ}^{miss}

1805.11381

Lepton pairs and E_{τ}^{miss}

SU

Lepton pairs and $\mathbf{E}_{_{\!T}}^{_{\rm miss}}$

1805.11381

$\begin{array}{l} \mathbf{High-}p_{\mathbf{T}} \\ \mathbf{regions} \end{array}$	$E_{\mathbf{T}}^{\mathbf{miss}}$ [GeV]	$H_{\mathbf{T}}$ [GeV]	$n_{\mathbf{jets}}$	$m_{\ell\ell}$ [GeV]	m_{T2} [GeV]	SF/DF	n_{b-jets}	$\Delta \phi(\mathbf{jet}_{12}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})$	$m_{\ell\ell}$ windows
Signal regions									
SR-low	> 250	> 200	≥ 2	> 12	> 70	\mathbf{SF}	_	> 0.4	10
SR-medium	> 400	> 400	≥ 2	> 12	> 25	\mathbf{SF}	_	> 0.4	9
$\operatorname{SR-high}$	> 200	> 1200	≥ 2	> 12	—	\mathbf{SF}	—	> 0.4	10
Control regions									
CR-FS-low	> 250	> 200	≥ 2	> 12	> 70	\mathbf{DF}	_	> 0.4	_
CR-FS-medium	> 400	> 400	≥ 2	> 12	> 25	\mathbf{DF}	—	> 0.4	—
$\operatorname{CR-FS-high}$	> 100	> 1100	≥ 2	> 12	—	\mathbf{DF}	_	> 0.4	—
$\mathrm{CR}\gamma ext{-low}$	_	> 200	≥ 2	—	—	0ℓ , 1γ	—	—	—
$\mathrm{CR}\gamma ext{-medium}$	_	> 400	≥ 2	—	—	0ℓ , 1γ	—	—	—
${ m CR}\gamma ext{-high}$	_	> 1200	≥ 2	—	—	$0\ell, 1\gamma$	—	—	—
CRZ-low	< 100	> 200	≥ 2	> 12	> 70	\mathbf{SF}	—	—	—
CRZ-medium	< 100	> 400	≥ 2	> 12	> 25	\mathbf{SF}	_	—	—
CRZ-high	< 100	> 1200	≥ 2	> 12	—	\mathbf{SF}	—	—	_
Validation regions	3								
VR-low	100-200	> 200	≥ 2	> 12	> 70	\mathbf{SF}	_	> 0.4	_
VR-medium	100 - 200	> 400	≥ 2	> 12	> 25	\mathbf{SF}	_	> 0.4	_
VR-high	100 - 200	> 1200	≥ 2	> 12	_	\mathbf{SF}	_	> 0.4	_
$\text{VR-}\Delta\phi\text{-low}$	> 250	> 200	≥ 2	> 12	> 70	\mathbf{SF}	—	< 0.4	—
$\text{VR-}\Delta\phi\text{-medium}$	> 400	> 400	≥ 2	> 12	> 25	\mathbf{SF}	—	< 0.4	—
$\mathrm{VR} ext{-}\Delta\phi ext{-}\mathrm{high}$	> 200	> 1200	≥ 2	> 12	_	\mathbf{SF}	_	< 0.4	—
VR-WZ	100 - 200	> 200	≥ 2	> 12	_	3ℓ	0	> 0.4	—
VR-ZZ	< 50	> 100	≥ 1	> 12	—	4ℓ	0	> 0.4	_

Lepton pairs and ${\rm E_T}^{\rm miss}$

60

LHC experiments

results from the

the

Ч

review

ന

SUSY

1805.11381

p	
9 5555555	$\tilde{\chi}_2^0$ $\tilde{\chi}_1^0$
J Electron	$\tilde{\chi}_2^0$ $\tilde{\chi}_1^0$
p	$\sum_{q} q^{Z^{(\star)}}$

		00								
$Low-p_T$ regions	$E_{\mathbf{T}}^{\mathrm{mass}}$ [GeV]	$p_{\mathbf{T}}^{lpha}$ [GeV]	n_{jets}	n_{b-jets}	$[{f GeV}]^{m_{\ell\ell}}$	SF/DF	OS/SS	$\Delta \phi(\mathbf{jet}_{12}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{mss}})$	$m_{\mathbf{T}}$ [GeV]	$m_{\ell\ell}$ windows
Signal regions										
SRC	> 250	< 20	≥ 2	_	> 30	SF	OS	> 0.4	_	6
SRC-MET	> 500	< 75	≥ 2	-	$>4, \notin [8.4, 11]$	\mathbf{SF}	OS	> 0.4	-	6
Control regions										
CRC	> 250	< 20	≥ 2	_	> 30	DF	OS	> 0.4	_	_
CRC-MET	> 500	< 75	≥ 2	_	$>4, \notin [8.4, 11]$	\mathbf{DF}	OS	> 0.4	_	_
CR-real	_	_	≥ 2	-	81 - 101	$2\ell \text{ SF}$	OS	_	_	_
$\operatorname{CR-fake}\left\{ { m \ } \right.$	< 125	_	_	_	> 4, \notin [8.4, 11] > 4, \notin [8.4, 11], \notin [81, 101]	$2\ell \ \mu e \ 2\ell \ \mu \mu$	\mathbf{SS}	_	_	_
Validation region	ns									
VRA	200-250	< 20	≥ 2	_	> 30	SF	OS	> 0.4	_	_
VRA2	200 - 250	> 20	≥ 2	_	$> 4, \notin [8.4, 11]$	\mathbf{SF}	OS	> 0.4	_	_
VRB	250 - 500	20 - 75	≥ 2	-	$>4, \notin [8.4, 11]$	\mathbf{SF}	OS	> 0.4	_	_
VRC	250 - 500	> 75	≥ 2	-	$> 4, \notin [8.4, 11]$	\mathbf{SF}	OS	> 0.4	_	-
VR-WZ-low- $p_{\rm T}$	> 200	_	≥ 1	0	$> 4, \notin [8.4, 11]$	3ℓ	-	> 0.4	_	-
$VR-ZZ-low-p_T$	> 200	—	—	0	$> 4, \notin [8.4, 11]$	4ℓ	-	> 0.4	_	-
$\text{VR-}\Delta\phi$	> 250		≥ 2	—	$>4, \notin [8.4, 11]$	\mathbf{SF}	OS	< 0.4	_	—
VR-fakes	> 225	_	≥ 2	-	$>4, \notin [8.4, 11]$	\mathbf{DF}	OS	> 0.4	$\ell_1, \ell_2 < 100$	_
VR-SS	> 225	-	≥ 2	—	$> 4, \notin [8.4, 11]$	\mathbf{SF}	\mathbf{SS}	> 0.4	$\ell_1, \ell_2 < 100$	-

Lepton pairs and $\mathbf{E}_{_{\!T}}^{_{\rm miss}}$

61

experiments

LHO

results from the

review of the

ຕ

SUSY

Signal Region $m_{\ell\ell}$ range [GeV]	Total Bkg.	Data	$\langle A\epsilon\sigma \rangle_{\rm obs}^{95} [{\rm fb}]$	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	p(s=0)	Z(s=0)
SR-low							
12-41	4.2 ± 2.0	6	0.28	10.2	$6.9^{+3.3}_{-1.3}$	0.27	0.6
12 - 61	8.0 ± 3.0	12	0.44	15.8	$9.9^{+4}_{-2.5}$	0.19	0.9
12 - 81	17 ± 5	27	0.73	26.3	15^{+6}_{-4}	0.086	1.4
12 - 101	75 ± 17	70	1.56	56.2	60^{+7}_{-5}	0.6	-0.2
81-101	57 ± 16	43	1.13	40.6	47^{+6}_{-6}	0.73	-0.6
101 - 201	42 ± 7	34	0.38	13.8	19^{+9}_{-5}	0.81	-0.9
101 - 301	58 ± 8	52	0.46	16.5	23^{+9}_{-8}	0.72	-0.6
201 - 401	25 ± 5	22	0.37	13.4	15^{+11}_{-4}	0.65	-0.4
301 - 501	10.2 ± 3.5	7	0.20	7.1	$9.4^{+4}_{-2.8}$	0.77	-0.7
501 -	$0.9\substack{+0.95\\-0.9}$	5	0.27	9.9	$6.0^{+2.3}_{-1.0}$	0.039	1.8
SR-medium							
12-41	4.8 ± 2.6	2	0.16	5.7	$6.9^{+3.2}_{-1.3}$	0.83	-1.0
12 - 61	7.0 ± 3.0	6	0.20	7.4	$8.2^{+4}_{-2.1}$	0.6	-0.3
12 - 81	13 ± 4	9	0.22	7.8	$11.0^{+4}_{-3.3}$	0.78	-0.8
12 - 101	23 ± 5	14	0.25	9.1	$13.5^{+5}_{-3.5}$	0.91	-1.3
81-101	10.3 ± 3.4	5	0.22	8.0	$10.0^{+2.8}_{-2.5}$	0.82	-0.9
101 - 201	7.6 ± 3.2	18	0.53	19.1	$11.1^{+4}_{-2.7}$	0.024	2.0
101 - 301	14 ± 4	23	0.68	24.5	14_{-4}^{+6}	0.063	1.5
201 - 401	7.1 ± 2.8	7	0.27	9.8	$8.6^{+4}_{-2.4}$	0.51	-0.0
401-	1.8 ± 1.4	1	0.12	4.3	$4.8^{+2.5}_{-1.0}$	0.67	-0.4
SR-high							
12-41	6.6 ± 1.7	4	0.14	5.0	$7.0^{+2.7}_{-2.1}$	0.82	-0.9
12 - 61	11.2 ± 2.3	8	0.18	6.5	$8.6^{+4}_{-2.5}$	0.8	-0.8
12 - 81	16.1 ± 2.9	14	0.25	9.1	$10.7^{+4}_{-2.5}$	0.67	-0.4
12 - 101	26 ± 4	25	0.37	13.4	14^{+5}_{-4}	0.54	-0.1
81-101	9.6 ± 2.1	11	0.30	11.0	$10.8^{+3.4}_{-2.2}$	0.35	0.4
101 - 201	27 ± 4	27	0.35	12.8	$12.9^{+7}_{-3.1}$	0.49	0.0
101 - 301	43 ± 5	37	0.35	12.7	17^{+6}_{-5}	0.77	-0.8
201 - 401	24 ± 4	15	0.19	6.8	12^{+5}_{-4}	0.94	-1.5
301 - 501	9.9 ± 2.2	8	0.21	7.5	$8.6^{+4}_{-2.7}$	0.7	-0.5
501 -	4.1 ± 1.3	2	0.12	4.3	$5.6^{+2.3}_{-1.5}$	0.84	-1.0

1805.11381

Lepton pairs and E_miss

CMS

1805.11381

 ℓ/ν

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

 ℓ/ν

Z

Z

Lepton pairs and E^{miss} – slepton limits

Lepton pairs and E^{miss} – Z^(*) limits

q

q

 ℓ/ν

 ℓ/ν

q

 ℓ/ν

Tau leptons

- One or two hadronically decaying tau leptons.
- Target scenarios with neutralino LSP as well as neutralino NLSP and gravitino LSP.
- Limits on gluino mass reach 2 TeV with neutralino LSP.

Tau leptons

- One or two hadronically decaying tau leptons.
- Target scenarios with neutralino LSP as well as neutralino NLSP and gravitino LSP.
- Limits on gluino mass reach 2 TeV with neutralino LSP.

SUSY-2016-030

CMS

CMS stop compressed 4-body

Chargino/neutralino production

 Search for chargino and neutralino production in final states with two or three charged leptons.

CMS

- Use recursive jigsaw reconstruction techniques.
- 1806.02293
- 3.0 σ excess in 3 lepton ISR selection (compressed scenarios).

Chargino/neutralino production

Region	m_Z [GeV]	$m_J [{ m GeV}]$	$\Delta \phi_{\mathrm{ISR,I}}^{\mathrm{CM}}$	$R_{\rm ISR}$	$p_{\rm T\ ISR}^{\rm CM}$ [GeV]	$p_{\mathrm{T~I}}^{\mathrm{CM}}$ [GeV]	$p_{\rm T}^{\rm CM}~[{\rm GeV}]$
$CR2\ell_{ISR-VV}$	$\in (80, 100)$	> 20	> 2.0	$\in (0.0, 0.5)$	> 50	> 50	< 30
$CR2\ell_ISR$ -Top	$\in (50, 200)$	$\in (50, 200)$	> 2.8	$\in (0.4, 0.75)$	> 180	> 100	< 20
VR2ℓ_ISR-VV	$\in (20, 80)$	> 20	> 2.0	$\in (0.0, 1.0)$	> 70	> 70	< 30
	or > 100						
$VR2\ell_ISR$ -Top	$\in (50, 200)$	$\in (50, 200)$	> 2.8	$\in (0.4, 0.75)$	> 180	> 100	> 20
$VR2\ell_ISR-Zjets$	$\in (80, 100)$	< 50 or > 110	—	—	> 180	> 100	< 20
$SR2\ell$ _ISR	$\in (80, 100)$	$\in (50, 110)$	> 2.8	$\in (0.4, 0.75)$	> 180	> 100	< 20
Region	$m_{\ell\ell} [{\rm GeV}]$	m_{T}^{W} [GeV]	$\Delta\phi_{\rm ISR,I}^{\rm CM}$	$R_{\rm ISR}$	$p_{\rm T~ISR}^{\rm CM}$ [GeV]	$p_{\mathrm{T~I}}^{\mathrm{CM}}$ [GeV]	$p_{\rm T}^{\rm CM}~[{\rm GeV}]$
CR3ℓ_ISR-VV	$\in (75, 105)$	< 100	> 2.0	$\in (0.55, 1.0)$	> 80	> 60	< 25
$VR3\ell_ISR-VV$	$\in (75, 105)$	> 60	> 2.0	$\in (0.55, 1.0)$	> 80	> 60	> 25
SR3ℓ_ISR	$\in (75, 105)$	> 100	> 2.0	$\in (0.55, 1.0)$	> 100	> 80	< 25

Table 11: Expected and observed yields from the background fit for the 2ℓ VRs. The nominal predictions from MC simulation are given for comparison for the $Wt + t\bar{t}$ and VV backgrounds. The "Other" category contains the contributions from Higgs boson processes, $V\gamma$, VVV, $t\bar{t}V$ and non-prompt and non-isolated lepton production. The dashes indicate that these backgrounds are negligible and are included in the category "Other". Combined statistical and systematic uncertainties are given. The individual uncertainties can be correlated and do not necessarily add in quadrature to the total systematic uncertainty.

Region	VR2ℓ_Low-Zjets	VR2ℓ_High-Zjets	VR2ℓ-VV	VR2ℓ-Top	VR2ℓ_ISR-VV	VR2ℓ_ISR-Top	VR2ℓ_ISR-Zjets
Observed events	263	77	72	491	13	113	248
Total (post-fit) SM events	261 ± 130	69 ± 26	61 ± 13	423 ± 105	12 ± 4	110 ± 18	310 ± 100
Other	3.5 ± 1.5	$0.25^{+0.62}_{-0.25}$	0.80 ± 0.09	2.3 ± 0.4	4.2 ± 0.5	0.68 ± 0.22	3.0 ± 0.6
Fit output, $Wt + t\bar{t}$	15 ± 5	1.7 ± 0.7	12 ± 4	415 ± 105	-	107 ± 18	40 ± 8
Fit output, VV	30 ± 7	16 ± 3	40 ± 13	3.7 ± 0.9	7.9 ± 3.6	0.97 ± 0.25	67 ± 15
Z+jets	210 ± 130	51 ± 25	8.4 ± 4.1	2.4 ± 1.2	-	1.6 ± 0.8	200 ± 100
Fit input, $Wt + t\bar{t}$	16	1.9	13	455	_	108	41
Fit input, VV	33	17	43	4.1	8.4	1.1	71

Table 12: Expected and observed yields from the background fit for the 3ℓ CRs and VRs. The normalization factors for VV for the standard and compressed decay trees are different and are extracted from separate fits. The nominal predictions from MC simulation are given for comparison for the VV background. The "Other" category contains the contributions from Higgs boson processes, $t\bar{t}V$ and non-prompt and non-isolated lepton production. Combined statistical and systematic uncertainties are given. The individual uncertainties can be correlated and do not necessarily add in quadrature to the total systematic uncertainty.

Region	CR3 <i>ℓ</i> -VV	VR3ℓ-VV	CR3ℓ_ISR-VV	VR3ℓ_ISR-VV
Observed events	331	160	98	83
Total (post-fit) SM events	331 ± 18	159 ± 37	98 ± 10	109 ± 24
Other Tribosons Fit output, VV	52 ± 2 1.1 ± 0.1 278 ± 18	5.6 ± 1.2 0.44 ± 0.03 153 ± 38	4.4 ± 1.2 0.22 ± 0.14 93 ± 10	7.1 ± 1.6 0.42 ± 0.04 102 ± 24
Fit input, VV	255	140	83	90

Table 13: Summary of the main systematic uncertainties and their impact (in %) on the total SM background prediction in each of the 2ℓ SRs. The total systematic uncertainty can be different from the sum in quadrature of individual sources due to the correlations between them resulting from the fit to the data.

Signal Region	SR2ℓ_High	SR2ℓ_Int	SR2ℓ_Low	SR2ℓ_ISR
Total uncertainty [%]	42	38	70	103
Z+jets data-driven estimate	42	31	69	96
VV theoretical uncertainties	28	27	6	34
MC statistical uncertainties	16	12	5	9
VV fitted normalization	13	14	2	16
FNP leptons	-	5	13	12
Jet energy resolution	5	10	4	3
Jet energy scale	1	2	< 1	3
$E_{\rm T}^{\rm miss}$ modeling	3	4	< 1	< 1
$t\bar{t}$ fitted normalization	< 1	< 1	2	2
Lepton reconstruction / identification	< 1	< 1	< 1	< 1

Table 14: Summary of the main systematic uncertainties and their impact (in %) on the total SM background prediction in each of the 3ℓ SRs. The total systematic uncertainty can be different from the sum in quadrature of individual sources due to the correlations between them resulting from the fit to the data.

Signal Region	SR3ℓ_High	SR3ℓ_Int	SR3ℓ_Low	SR3ℓ_ISR
Total uncertainty [%]	44	22	19	26
VV theoretical uncertainties	18	9	12	19
MC statistical uncertainties	37	17	8	10
VV fitted normalization	8	7	9	11
FNP leptons	7	< 1	3	5
Jet energy resolution	4	< 1	7	3
Jet energy scale	7	< 1	2	3
$E_{\rm T}^{\rm miss}$ modeling	2	< 1	1	4
Lepton reconstruction / identification	3	4	2	2

Chargino/neutralino production

Table 15: Expected and observed yields from the background-only fit for the 2ℓ SRs. The errors shown are the statistical plus systematic uncertainties. Uncertainties in the predicted background event yields are quoted as symmetric, except where the negative error reaches down to zero predicted events, in which case the negative error is truncated.

Signal region	SR2ℓ_High	SR2ℓ_Int	SR2ℓ_Low	SR2ℓ_ISR
Total observed events	0	1	19	11
Total background events	1.9 ± 0.8	2.4 ± 0.9	8.4 ± 5.8	$2.7^{+2.8}_{-2.7}$
Other Fit output, $Wt + t\bar{t}$	0.02 ± 0.01 0.00 ± 0.00	$\begin{array}{c} 0.05^{+0.12}_{-0.05} \\ 0.00 \pm 0.00 \end{array}$	$\begin{array}{c} 0.02^{+1.07}_{-0.02} \\ 0.57 \pm 0.20 \end{array}$	$0.06^{+0.33}_{-0.06}$ $0.28^{+0.34}_{-0.28}$
Fit output, VV Z+jets	$\begin{array}{c} 1.8 \pm 0.7 \\ 0.07 \substack{+0.78 \\ -0.07} \end{array}$	$\begin{array}{c} 2.4 \pm 0.8 \\ 0.00 \substack{+0.74 \\ -0.00} \end{array}$	1.5 ± 0.9 6.3 ± 5.8	$\begin{array}{r} -0.28\\ 2.3 \pm 1.1\\ 0.10^{+2.58}_{-0.10}\end{array}$
Fit input, $Wt + t\bar{t}$ Fit input, VV	0.00 1.9	0.00 2.6	0.63 1.6	0.28 2.4

Table 16: Expected and observed yields from the background-only fit for the 3ℓ SRs. The errors shown are the statistical plus systematic uncertainties. Uncertainties in the predicted background event yields are quoted as symmetric, except where the negative error reaches down to zero predicted events, in which case the negative error is truncated.

Signal region	SR3ℓ_High	SR3ℓ_Int	SR3ℓ_Low	SR3ℓ_ISR
Total observed events	2	1	20	12
Total background events	1.1 ± 0.5	2.3 ± 0.5	10 ± 2	3.9 ± 1.0
Other	$0.03^{+0.07}_{-0.03}$	0.04 ± 0.02	$0.02^{+0.34}_{-0.02}$	$0.06^{+0.19}_{-0.06}$
Triboson	0.19 ± 0.07	0.32 ± 0.06	0.25 ± 0.03	0.08 ± 0.04
Fit output, VV	0.83 ± 0.39	1.9 ± 0.5	10 ± 2	3.8 ± 1.0
Fit input, VV	0.76	1.8	9.2	3.4

Chargino/neutralino production

Table 18: Breakdown of the observed and expected (in parentheses) number of events in terms of flavor composition in the SRs with an excess.

Signal region	SR2ℓ_Low	SR2ℓ_ISR
ee	9 (4.5±3.9)	3 (1.2±1.2)
$\mu\mu$	10 (3.9±2.6)	8 (1.5±1.5)
Signal region	$SR3\ell$ _Low	$SR3\ell$ _ISR
eee	6 (3.5±0.7)	3 (1.1±0.3)
ееµ	6 (2.0±0.4)	3 (0.9±0.3)
$\mu\mu\mu$	7 (2.7±0.6)	$4(1.5\pm0.4)$
μμε	1 (1.9±0.4)	$2(0.4\pm0.1)$

Chargino/neutralino production

Second generation sleptons

- Search for resonant production of second generation sleptons via RPV coupling.
- Final state with two same-sign muons and at least two jets.

• Upper limit on cross section translated to upper limit on λ'_{211} coupling strength in cMSSM with λ'_{211} as additional coupling.

CMS-PAS-SUS-17-008

Semileptonic LLP decays

- Search for long-lived particles through a displaced vertex with several tracks including a high p_{τ} muon.
- Forward coverage (2< η <5) and low trigger p_{τ} threshold gives sensitivity to small LLP masses.
- Cover LLP lifetimes from 5 ps up to 100 ps and masses in the range 20–80 GeV.
 a) 2¹⁰

• Also neutralino production in RPV models with mass in 23-98 GeV range.

 π

1612.00945

K

PV

SUSY search methods

Objects and observables to enrich S/B:

Which SUSY?

- SUSY is not one model, rather infinitely many.
- MSSM
 - Minimal new particle content.
 - No assumption on SUSY breaking \rightarrow 120 additional free parameters.
- pMSSM
 - Reduce MSSM to 19 free parameters by imposing phenomenological and experimental constrains.
- cMSSM
 - Reduce MSSM to 5 free parameters by assuming universality at GUT scale.
- GMSB/AMSB
 - Reduce MSSM to 5 free parameters by assuming SUSY breaking mechanism.
- NMSSM
 - Extend MSSM by adding an additional singlet chiral superfield.
- Simplified Models
 - Masses of non-relevant SUSY particles are put very large.
 - 100% BR to single final state.

