EXOTICS AT THE LHC

Daniele del Re

Sapienza Università & INFN Sezione Roma

on behalf of the CMS, ATLAS, and LHCb collaborations

WHY EXOTIC SEARCHES AT LHC

UNANSWERED QUESTIONS

Several open issues implying Physics beyond Standard Model. Some examples:

- **1.** Why only three families of leptons and quarks?
- 2. Why four fundamental interactions and not one?
 unification is impossible even at very large energies
- 3. Why only 5% of matter made of ordinary SM particles? – what is dark matter?

4. Why most massive particle"only" 200 times heavier than p?
 – desert above 170 GeV

THE MEANING OF EXOTICS

- 1) Covering all possible signatures and be ready for the unexpected
- 2) Be as much as model-independent as possible
 - Use of benchmark models to test the significance of the searches
- 3) Search for extremely high masses
- 4) Go for really exotic:
 - Models with new interactions, quarks, leptons
 - Unconventional signatures
- 5) Find a candidate for dark matter
- 6) Explore new analysis techniques to boost discovery potential
- Hundreds of results and searches
- Here I provide the global picture and focus on very recent or brand new results

PLENTY OF LUMINOSITY TO PLAY WITH

Run1: ~30 fb⁻¹ @ 7 - 8 TeV

- Discovery of Higgs boson
- Exploration of new physics

Run2:

- 2015: ~4 fb⁻¹ @ 13 TeV
 - First look in new territory
- 2016: ~40 fb⁻¹ @ 13 TeV
 - Repeat 8 TeV program
- 2017: ~50 fb⁻¹ @ 13 TeV
 - Go deeper and detailed
- 2018: ~20 fb⁻¹ @ 13 TeV
 - Ongoing: expect 60 fb⁻¹

Full Run2: ~150 fb⁻¹

Mean Number of Interactions per Crossing

shown today

statistics

UNIQUE PLAYGROUND

~ 1.7 TeV monojet event!

~ 8 TeV dijet event!

Deep understanding of detector for detailed searches

Resonances

 Fully reconstructed resonances represent the simplest way to discover new particles

- striking and incontrovertible signature
- small systematics, robust
- Most of resonance searches are two-body
- Many possible combinations and channels explored

SPECIFIC MODELS FOR SPECIFIC ISSUES

Exotics at the LHC

Several models introduced to resolve issue in the Standard Model. Some examples

Explain light mass of the neutrinos:

- Seesaw Models:
 - Type III: introduces new heavy fermions, coupling to leptons, Higgs and V bosons

Why same number of generation for leptons and quarks:

- leptoquarks carry both lepton and baryon number
 - decay in lepton-jet

Why three generations of fermions and their hierarchy:

- excited quarks, excited leptons
 - resonant qq/qg and lq/Zq states

LONG-LIVED AND UNCONVENTIONAL

Long-lived (LL) and unconventional exotic particles with striking signatures predicted by many extensions of the SM.

Why LL?

phase-space suppressed, small mass splitting

Examples:

Heavy, long-lived, charged particles

- R-hadrons, Sleptons

Particles can decay in the detector after few cm

 neutralinos in GMSB, mass-degenerate gauginos, particles of an Hidden Sector

THE DARK MATTER

- Look for weakly interacting new particles produced at LHC
 - Dark Matter candidates!
- Pair production at LHC
 - DM candidates escape the detector (weekly interacting)
- Large Missing energy distribution is the key variable
- Deep understanding of SM background and detectors

missing energy

Resonances

EXTREMELY HIGH MASSES

Very strong limits now

Increasing statistics gives no breakthrough anymore

	examples	Mass Lower limit			
	String resonance (jj)	~ 8 TeV			
	Excited quark (jj)	~ 6 TeV			
	Z' (SSM) (II)	~ 4.5 TeV			
	W' (SSM) (I∨)	~ 5.5 TeV			
6					
.5	*				
5		W' (SSM) (Iv)			
.5	/	Combined			
		Electron			

13 TeV pp Lumi [1/fb]

Muon

credits: G. Facini

DIJET: LOW AND INTERMEDIATE REGION

Extend the scope: look for intermediate and low mass regions

Save reduced event

DIJET: COMBINED LIMITS

• ATLAS and CMS limits on g_q ($\sigma \propto g_q^4$)

– covering the whole range. LHC now doing better than previous experiments everywhere

DIJET: BJETS, TAGS, WIDE RESONANCES

Extend dijet analysis

- -dijet in bb (ATLAS: <u>1805.09299</u>, CMS: <u>EXO-17-024</u>)
- -extra event requirements (high p_T lepton) to reduce E thresholds
- -wide resonances, important for dark matter reinterpretation

EXPLOITING SUBSTRUCTURES (I)

EXPLOITING SUBSTRUCTURES (II)

Exotics at the LHC

PERSPECTIVES AND IMAGES

 Boosted jet variables (substructures and flavor tagging) with images, deep learning and more detailed algorithms

NEW LEPTONS, NEW QUARKS

LEPTOQUARKS AND ANOMALIES

Anomalies in B decays explained with leptoquark contributions

Daniele del Re

Exotics at the LHC

RECENT LQ RESULTS: LQ1 PAIRS

- Leptoquarks produced in pairs
- 2e 2jets, ev 2jets final states
- Selection based on visibile momentum, minimum m(e-jet) and m(ee)/m(ev), MET

mass limits @ ~ 1.2 - 1.45 TeV

RECENT LQ RESULTS: LQ3 PAIRS

- Leptoquarks decaying to top-µ and tau-b and produced in pairs
- mass limits
 - top-µ: **1.45 TeV**
 - -tau-b: 1.02 TeV

VECTOR-LIKE QUARKS

Vector-like T quark models solve hierarchy problem

- new heavy partner of top in loop

- Search of T (q=2/3) and B (q=-1/3) VLQ decaying to W,H,Z and t,b produced in pairs
- Recent combination of 7 final states (H(bb)t, W(lv)b, W(lv)t, Z(vv)t, Z(ll)t/b, trilepton/same-sign dilepton, fully hadronic)

also released recently $\underline{B} \rightarrow H(\gamma \gamma)b$

MASS REACH

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Status: July 2018

 $\int \mathcal{L} dt = (3.2 - 79.8) \text{ fb}^{-1}$

 $\sqrt{s} = 8$, 13 TeV

I	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[ft	⁻¹] Limit			Reference
Extra dimensions AD AD AD Bul Bul 2U	DD $G_{KK} + g/q$ DD non-resonant $\gamma\gamma$ DD QBH DD BH high $\sum p_T$ DD BH multijet S1 $G_{KK} \rightarrow \gamma\gamma$ Ilk RS $G_{KK} \rightarrow WW/ZZ$ Ilk RS $g_{KK} \rightarrow tt$ JED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ - \\ \geq 1 \ e, \mu \\ - \\ 2 \ \gamma \\ \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$1 - 4j$ $-$ $2j$ $\geq 2j$ $\geq 3j$ $-$ el $\geq 1 b, \geq 1J$ $\geq 2 b, \geq 3$	Yes - - - - /2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 36.1 36.1	М _D M _S M _{th} M _{th} M _{th} G _{KK} mass G _{KK} mass g _{KK} mass g _{KK} mass	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 4.1 TeV 2.3 TeV 3.8 TeV 1.8 TeV	n = 2 n = 3 HLZ NLO n = 6 $n = 6, M_D = 3 \text{ TeV, rot BH}$ $n = 6, M_D = 3 \text{ TeV, rot BH}$ $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$ $\Gamma/m = 15\%$ Tier (1,1), $\mathcal{B}(A^{(1,1)} \rightarrow tt) = 1$	1711.03301 1707.04147 1703.09217 1606.02265 1512.02586 1707.04147 CERN-EP-2018-179 1804.10823 1803.09678
SS SS Let AN FA FA FA FA FA FA FA FA FA FA FA FA FA	$\begin{array}{l} \mathrm{SM}\; Z' \to \ell\ell \\ \mathrm{SM}\; Z' \to \tau\tau \\ \mathrm{ptophobic}\; Z' \to bb \\ \mathrm{ptophobic}\; Z' \to tt \\ \mathrm{SM}\; W' \to \ell\nu \\ \mathrm{SM}\; W' \to \tau\nu \\ \mathrm{/T}\; V' \to WV \to qqqq \mbox{ model B} \\ \mathrm{/T}\; V' \to WH/ZH \mbox{ model B} \\ \mathrm{RSM}\; W'_R \to tb \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \end{array}$ multi-channe multi-channe	- 2 b ≥ 1 b, ≥ 1J - 2 J el	- - /2j Yes Yes Yes -	36.1 36.1 36.1 79.8 36.1 79.8 36.1 36.1	Z' mass Z' mass Z' mass Z' mass W' mass V' mass V' mass V' mass W' mass	4.5 TeV 2.42 TeV 2.1 TeV 3.0 TeV 5.6 TeV 3.7 TeV 4.15 TeV 2.93 TeV 3.25 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$	1707.02424 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018-017 1801.06992 ATLAS-CONF-2018-016 1712.06518 CERN-EP-2018-142
	qqqq ℓℓqq tttt	_ 2 e,μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	j Yes	37.0 36.1 36.1	Λ Λ Λ	2.57 TeV	21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09217 1707.02424 CERN-EP-2018-174
Axi Co VV	tial-vector mediator (Dirac DM) plored scalar mediator (Dirac DM $V_{\chi\chi}$ EFT (Dirac DM)	0 e,μ Λ) 0 e,μ 0 e,μ	1 - 4 j 1 - 4 j $1 J, \le 1 j$	Yes Yes Yes	36.1 36.1 3.2	mmmed 1.5 mmmed 1. M. 700 GeV	i5 TeV .67 TeV	$\begin{array}{l} g_q{=}0.25,g_{\chi}{=}1.0,m(\chi)=1~{\rm GeV}\\ g{=}1.0,m(\chi)=1~{\rm GeV}\\ m(\chi)<150~{\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372
O Sca Sca	calar LQ 1 st gen calar LQ 2 nd gen calar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	_ j Yes	3.2 3.2 20.3	LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV		$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \beta = 0 \end{array}$	1605.06035 1605.06035 1508.04735
Heavy Arv Arv Arv Arv Arv Arv Arv Arv Arv Arv	$\begin{array}{l} Q \ TT \rightarrow Ht/Zt/Wb + X \\ Q \ BB \rightarrow Wt/Zb + X \\ Q \ T_{5/3} T_{5/3} T_{5/3} \rightarrow Wt + X \\ Q \ Y \rightarrow Wb + X \\ Q \ B \rightarrow Hb + X \\ Q \ QQ \rightarrow WqWq \end{array}$	multi-channe multi-channe 2(SS)/≥3 e,μ 1 e,μ 0 e,μ, 2 γ 1 e,μ	el μ ≥1 b, ≥1 j ≥ 1 b, ≥ 1 ≥ 1 b, ≥ 1 ≥ 1 b, ≥ 1 ≥ 4 j	j Yes j Yes j Yes Yes	36.1 36.1 36.1 3.2 79.8 20.3	T mass 1.37 B mass 1.34 T _{5/3} mass 1. Y mass 1. Y mass 1.44 B mass 1.21 Q mass 690	TeV TeV 64 TeV TeV V	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c(YWb) = 1/\sqrt{2}$ $\kappa_B = 0.5$	ATLAS-CONF-2018-XXX ATLAS-CONF-2018-XXX CERN-EP-2018-171 ATLAS-CONF-2016-072 ATLAS-CONF-2018-XXX 1509.04261
Excited fermions exe	active quark $q^* \rightarrow qg$ active quark $q^* \rightarrow q\gamma$ active quark $b^* \rightarrow bg$ active lepton ℓ^* active lepton ν^*	_ 1 γ _ 3 e,μ 3 e,μ,τ	2j 1j 1b,1j -	- - - -	37.0 36.7 36.1 20.3 20.3	q* mass q* mass b* mass <i>t</i> * mass <i>v</i> * mass 1	6.0 TeV 5.3 TeV 2.6 TeV 3.0 TeV .6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 1709.10440 1805.09299 1411.2921 1411.2921
Typ LR: Hig Mo Mu Ma	pe III Seesaw RSM Majorana ν ggs triplet $H^{\pm\pm} \rightarrow \ell \ell$ 22 ggs triplet $H^{\pm\pm} \rightarrow \ell \tau$ ponotop (non-res prod) ulti-charged particles agnetic monopoles \sqrt{s}	$ \begin{array}{c} 1 \ e, \mu \\ 2 \ e, \mu \\ 2,3,4 \ e, \mu \\ 3 \ e, \mu, \tau \\ 1 \ e, \mu \\ - \\ - \\ = 8 \ \text{TeV} \end{array} $	$\ge 2j$ 2j - 1b - - $\sqrt{s} = 13$	Yes - - Yes - 3 TeV	79.8 20.3 36.1 20.3 20.3 20.3 7.0	N° mass 560 GeV N° mass 870 GeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 T 10 ⁻¹ 1	2.0 TeV TeV 1	$m(W_R) = 2.4$ TeV, no mixing DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell \tau) = 1$ $a_{non-res} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2 Mass scale [TeV]	ATLAS-CONF-2018-020 1506.06020 1710.09748 1411.2921 1410.5404 1504.04188 1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Daniele del Re

Exotics at the LHC

Long-Lived Signatures

UNDERSTANDING DETECTORS

when the going gets tough, the tough get going

- Detector-based exotic signatures require:
 - -dE/dx, TOF, displaced vertex, disappearing tracks, stopped particles
- Specific control samples to model exotic signature in detector:
 - -LL signatures like detector noise. Deep knowledge of detector.

Daniele del Re

DISAPPEARING STUFF

Isolated track with

- -missing hits in the outer layers of the tracker
- little energy in associated calorimeter deposits
- -no associated hits in muon detectors.

EMERGING STUFF

Dark QCD (dark matter candidate)

- O(TeV) heavy mediators in dark pions (mass ~GeV), lifetime 1 to 1000 mm
- Signature: 2 SM jets and 2 emerging jet
 - emerging jet selected by exploiting the displacement of tracks in jet

DARK PHOTON (LHCB)

- Dark matter may interact via a new dark force
- Dark photon couples to SM via kinetic mixing: $\frac{1}{2} \frac{\epsilon}{\cos \theta} \hat{Z}_{D\mu\nu} \hat{B}^{\mu\nu}$
- Depending on ε A' prompt or long-lived
- Search for dimuon resonance:
 - prompt or displaced events

DARK PHOTON (LHCB)

- Limits competitive to B factories
- Only experiments to put constraint above 10 GeV
- Red and green curves show the predictions from LHC Run 3

DARK PHOTON (ATLAS)

Two recent analyses:

1) Four prompt leptons. Require Higgs mass and use of m(II).

2) Two displaced muons. Displaced vertex and use of $m(\mu\mu)$

DARK MATTER

DARK MATTER SEARCH AT LHC

- EW bosons and gluons can be radiated by initial partons
- Presence of high energy photon/W/Z/Higgs or jet(s) in addition to large missing transverse energy
- Gluon radiation at higher rate than EW bosons
 - strong interaction vs. electromagnetic

• mono-jet

- most general signature, constraints on many models

- mono-photon
 - more challenging for background estimation
 less powerful: EW vs. strong interaction
- mono-W/Z leptonic
 - clean signature and simple trigger
 - penalized by W/Z branching fraction
- mono-W/Z hadronic
 - larger statistics with larger background
- tt+MET/bb+MET and mono-top
 - more complicated experimentally
 - powerful in some scenarios
- mono-Higgs

- powerful in some scenarios

DM @ LHC: ANALYSIS STRATEGY

- Use MET shape to extract signal contribution
- Similar shape for signal and background
 - Signal harder

Main contributions (monojet example)

-Z(vv)+jet

-W(lv)+jet, where charged lepton is not reconstructed

SPIN-1: MONOJET, MONOPHOTON, MONOZ

MEDIATOR SEARCHES AND DM: SPIN-1

 By fixing couplings limits on mediators cross section translated into DM production cross section

MEDIATOR SEARCHES AND DM: SPIN-1

 By fixing couplings limits on mediators cross section translated into DM production cross section

MEDIATOR SEARCHES AND DM: SPIN-1

 By fixing couplings limits on mediators cross section translated into DM production cross section

SPIN-0

- In case of spin-0 mediator, final states with top quarks are favored (coupling proportional to quark mass)
- For tt+MET analysis use of final states with b jets and leptons from W decays in different categories

Daniele del Re

CONCLUSIONS

- Coherent and rich program of Exotics searches at LHC
- Several different signatures and models are tested, e.g.
 - High mass resonances
 - -New or excited quarks and leptons
 - -Long-lived
 - Dark Matter
- No sign of new physics yet
- Expect moderate improvements for extremely high mass searches in future
- Several new approaches and analysis techniques target low/ intermediate mass region and new signatures
- There is still plenty of room to search for new physics in the Exotics land at the LHC

LONGER TERM

- Many searches (in particular intermediate masses and long lived) largely improve with higher luminosities
- HL-LHC with 3 ab⁻¹ will extend discovery potential

STABLE STUFF

 Heavy Stable Charged Particles, e.g. slepton (slow moving muon-like particle)

- dE/dx: large ionization left in tracker detectors by high mass R-hadrons or sleptons (enhanced if charge ≠ 1)
- slow moving high mass stable charged particles identified using timing measured in muon system

RESONANCES IN VECTOR LIKE QUARKS

- Vector-like T quark models solve hierarchy problem: new heavy partner of top in loop
- Search of resonances in T/B + t/b with VLQ decaying to H(bb)t, H(bb)b or Z(bb)t
 - substructures to reconstruct H, Z and top
- Limits on Z'/W' depend on m(T) and m(B)
 - @ 1.5 -2.5 TeV level for Z', cross section vs mass for W'

boosted

H, Z, W

t, t, b

t.b

T.B

Z',W'

DARK PHOTON (ATLAS)

- Here 1) Z mixes with dark Z and 2) H mixes with dark Higgs
- Reconstruct four leptons, m(4I) = m(H)
 - for 1) require m(II) = m(Z), search fo peak in other II combination
 - for 2) search for peak in average mass of two II combinations

LQ SUMMARY

Daniele del Re

Exotics at the LHC

DIJET: GO WIDER

- Dijet data reinterpreted considering wide resonances
 - makes the background fits and possible biases more critical

