

### Rare decays of B, D, and K mesons



CERN

**Niels Tuning** 

on behalf of LHCb with material from ATLAS, BaBar, Belle, BESIII, CMS, KOTO, NA62

### Rare decays have a track record

### • $K^0 \rightarrow \mu \mu$ : predicted charm quark

- $-m_c < 5 \text{ GeV}$
- $J/\psi$  discovered 4 years later

Rare Decay Modes of the K-Mesons in Gauge Theories M. K. GAILLARD<sup>\*</sup> and BENJAMIN W. LEE<sup>†</sup> National Accelerator Laboratory, Batavia. Illinois 60510

our attention on the Weinberg-Salam model. In this model,  $K \rightarrow \mu \mu$ is suppressed due to a fortuitous cancellation. To explain the small  $K_L - K_S$  mass difference and nonsuppression of  $K_L \rightarrow \gamma \gamma$ , it is found necessary to assume  $m_p / m_p' << i$  where  $m_p$  is the mass of the pquark and  $m_{p'}$  the mass of the charmed quark, and  $m_{p'} < 5$  GeV. We

in the limit of chiral SU(3)  $\times$  SU(3) symmetry, where m<sub>c</sub> is the average mass of the charmed pseudoscalar mesons. If this is correct, we expect m<sub>c</sub> to be less than, say, 10 GeV. The experimental implications of the existence of charmed mesons have already been discussed by GIM

#### Weak Interactions with Lepton-Hadron Symmetry\*

S. L. GLASHOW, J. ILIOPOULOS, AND L. MAIANI<sup>†</sup> Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02139 (Received 5 March 1970)

We propose a model of weak interactions in which the currents are constructed out of four basic quark fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory, that the leading divergences do not violate any strong-interaction symmetry and the next to the leading divergences respect all observed weak-interaction selection rules. The model features a remarkable symmetry between leptons and quarks. The extension of our model to a complete Yang-Milis theory is discussed.

splitting, beginning at order  $G(G\Lambda^2)$ , as well as contributions to such unobserved decay modes as  $K_2 \rightarrow \mu^+ + \mu^-$ ,  $K^+ \rightarrow \pi^+ + l + \bar{l}$ , etc., involving neutral lepton

We wish to propose a simple model in which the divergences are properly ordered. Our model is founded in a quark model, but one involving four, not three, fundamental fermions; the weak interactions are medi-



Phys.Rev. D2 (1970) 1285



B.W. Lee

### Historical record of indirect discoveries:

V

d

 $\mu^+$ 

d

| Particle                                                                                                                                                                                                             | Indirect                    |              |         | Direct             |               |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|---------|--------------------|---------------|------------|
| ν                                                                                                                                                                                                                    | β decay                     | Fermi        | 1932    | Reactor v-CC       | Cowan, Reines | 1956       |
| W                                                                                                                                                                                                                    | β decay                     | Fermi        | 1932    | W→ev               | UA1, UA2      | 1983       |
| с                                                                                                                                                                                                                    | <i>К⁰ <b>→</b>µµ</i>        | GIM          | 1970    | ]/ψ                | Richter, Ting | 1974       |
| b                                                                                                                                                                                                                    | СРV <i>К<sup>0</sup>→пп</i> | CKM, 3rd gen | 1964/72 | Y                  | Ledermann     | 1977       |
| Z                                                                                                                                                                                                                    | v-NC                        | Gargamelle   | 1973    | Z→ e+e-            | UA1           | 1983       |
| t                                                                                                                                                                                                                    | B mixing                    | ARGUS        | 1987    | $t \rightarrow Wb$ | D0, CDF       | 1995       |
| н                                                                                                                                                                                                                    | e+e-                        | EW fit, LEP  | 2000    | <i>Η→</i> 4μ/γγ    | CMS, ATLAS    | 2012       |
| ?                                                                                                                                                                                                                    | What's next ?               |              | ?       |                    |               | ?          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                |                             |              |         |                    |               | H<br>(`` / |
| $W^{-} \swarrow \frac{1}{\bar{\nu}_{e}} s \qquad \mu^{-} p = \frac{\zeta Z}{d} \qquad \qquad$ |                             |              |         |                    |               |            |
| $K^0 \left[ \begin{array}{c} c \\ W \\ W \end{array} \right] \nu_{\mu} \qquad \qquad B^0 \left[ \begin{array}{c} t \\ W \\ W \\ U \end{array} \right] t \left[ \begin{array}{c} W \\ B^0 \end{array} \right] e^{-t}$ |                             |              |         |                    |               |            |

b

d

### Direct discoveries rightfully higher valued:

d

| Particle                                                                                                                                                                   | Indirect             |                          |        | Direct             |               |        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|--------|--------------------|---------------|--------|--|
| ν                                                                                                                                                                          | β decay              | Fermi                    | 1932 🤗 | Reactor v-CC       | Cowan, Reines | 1956 🔗 |  |
| W                                                                                                                                                                          | β decay              | Fermi                    | 1932   | W→ev               | UA1, UA2      | 1983 🍣 |  |
| с                                                                                                                                                                          | <i>К⁰ <b>→</b>µµ</i> | GIM                      | 1970   | J/ψ                | Richter, Ting | 1974 🏈 |  |
| b                                                                                                                                                                          | СРV <i>К⁰→пп</i>     | CKM, 3 <sup>rd</sup> gen | 1964/  | Y                  | Ledermann     | 1977   |  |
| Z                                                                                                                                                                          | v-NC                 | Gargamelle               | 1973   | Z→ e+e-            | UA1           | 1983 💡 |  |
| t                                                                                                                                                                          | B mixing             | ARGUS                    | 1987   | $t \rightarrow Wb$ | D0, CDF       | 1995   |  |
| н                                                                                                                                                                          | e+e-                 | EW fit, LEP              | 2000   | <i>Η→</i> 4μ/γγ    | CMS, ATLAS    | 2012   |  |
| ?                                                                                                                                                                          | What's next??        |                          | ?      | ?                  |               |        |  |
| $W^{-} \qquad \stackrel{u}{\underset{v_{e} \ s}{\underset{W^{0} \ w}{\underset{w}{\underset{w}{\underset{w}{\underset{w}{\underset{w}{\underset{w}{\underset{w}{\underset$ |                      |                          |        |                    |               |        |  |
|                                                                                                                                                                            | $d$ $\mu^+$          |                          |        |                    | b $d$         |        |  |

d



5

Depending on your model, sensitive to multi-TeV scales, eg:





Fully leptonic

s  $\psi$   $\gamma/Z^0$   $\mu$ 

"Half-leptonic"



#### > It's all about FCNC EW Penguins

- (= Flavour Changing Neutral Current Electro Weak)
- > Suppressed in the SM, so NP effects can compete



Fully leptonic

 $\mu$ sW  $\nu$ Wb $\mu$ sИ  $\mathcal{V}$  $\mu^{-}$  $\mu^+$ 

"Half-leptonic"

#### > It's all about FCNC EW Penguins

- (= Flavour Changing Neutral Current Electro Weak)
- Suppressed in the SM, so NP effects can compete



#### The first penguin:



Nucl. Phys. B131 (1977) 285

# $\mu$ sW $\gamma/Z^0$ $\mu$ bsΛ

#### > It's all about FCNC EW Penguins

- (= Flavour Changing Neutral Current Electro Weak)
- Suppressed in the SM, so NP effects can compete

 $\mu^{-}$ 

 $\mu^+$ 

## **Outline: A wealth of sensitive probes!**

### Rare Strange and Charm

- Leptonic:  $K_{S}^{0} \rightarrow \mu^{+}\mu^{-}$   $D^{0} \rightarrow \mu^{+}\mu^{-}$   $D^{0} \rightarrow e^{+}\mu^{-}$
- FCNC:  $K^{+/0} \rightarrow \pi^{+/0} V V$   $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$
- Baryonic:  $\Sigma^+ \rightarrow p\mu^+\mu^ \Lambda_c^+ \rightarrow p\mu^+\mu^-$

- Rare Beauty
  - Leptonic:
  - FCNC:
  - Baryonic:  $\Lambda_b^0 \rightarrow \Lambda^0 \mu^+ \mu^-$
  - Semi-leptonic:  $B^0 \rightarrow D^{(*)}\mu^+\nu$   $B_c^+ \rightarrow J/\psi \mu^+\nu$

 $B^{0}{}_{(s)} \rightarrow \mu^{+}\mu^{-}$   $B^{0}{}_{s} \rightarrow \tau^{+}\tau^{-}$   $B^{0} \rightarrow e^{+}\mu^{-}$  $B^0 \rightarrow K^* \mu^+ \mu^ B^0_s \rightarrow (\phi) K^{0*} \mu^+ \mu^-$ 

- Observables:
  - Branching fraction
  - Decay rate
  - Angular distributions

### Outline

|         | Flavo                                                                                                                            | Charged Current                                                                                                                                                                                         |                                                       |                                                                                                            |
|---------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|         | Leptonic                                                                                                                         | Mesonic                                                                                                                                                                                                 | Baryonic                                              | Semi-leptonic                                                                                              |
|         | $s$ $\mu$ $\mu$ $\mu$ $\mu$ $\mu$                                                                                                | $b \xrightarrow{W}_{\gamma/Z}$                                                                                                                                                                          | $\overset{s}{\overbrace{\qquad}}^{\mu^{-}}_{\mu^{+}}$ | $b \xrightarrow{W^-} \mu^-$                                                                                |
| Strange | $K_S^0 \rightarrow \mu^+ \mu^-$                                                                                                  | $\begin{array}{l} K^+ \longrightarrow \pi^+ \nu \nu \\ K^0 \longrightarrow \pi^0 \nu \nu \end{array}$                                                                                                   | $\Sigma^+ \rightarrow p \mu^+ \mu^-$                  |                                                                                                            |
| Charm   | $D^{0} \rightarrow \mu^{+} \mu^{-}$ $D^{0} \rightarrow e^{+} \mu^{-}$                                                            | $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$<br>$J/\psi \rightarrow D^0 e^+ e^-$                                                                                                                               | $\Lambda_c^{+} \rightarrow p \mu^+ \mu^-$             |                                                                                                            |
| Beauty  | $B^{0}{}_{(s)} \rightarrow \mu^{+}\mu^{-}$ $B^{0}{}_{(s)} \rightarrow \tau^{+}\tau^{-}$ $B^{0}{}_{(s)} \rightarrow e^{+}\mu^{-}$ | $B^{0} \rightarrow K^{(*)}\mu^{+}\mu^{-}/e^{+}e^{-}$ $B^{+} \rightarrow K^{(*)}\mu^{+}\mu^{-}/e^{+}e^{-}$ $B^{0}{}_{s} \rightarrow \varphi\mu^{+}\mu^{-}$ $B^{0}{}_{s} \rightarrow K^{*}\mu^{+}\mu^{-}$ | $\Lambda_b {\rightarrow} \Lambda  \mu^+ \mu^-$        | $B^{0} \rightarrow D^{(*)}\mu^{+}\nu / \tau^{+}\nu$ $B_{c}^{+} \rightarrow J/\psi\mu^{+}\nu / \tau^{+}\nu$ |

### Outline

|         | Flavo                                                                                                                            | Charged Current                                                                                                                                                                                 |                                                       |                                                                                                            |
|---------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|         | Leptonic                                                                                                                         | Mesonic                                                                                                                                                                                         | Baryonic                                              | Semi-leptonic                                                                                              |
|         | $s$ $\mu$ $\mu$ $\mu$ $\mu$ $\mu$                                                                                                | $b \xrightarrow{W}_{\gamma/Z}$                                                                                                                                                                  | $\overset{s}{\overbrace{\qquad}}^{\mu^{-}}_{\mu^{+}}$ | $b \xrightarrow{W^-} \mu^-$                                                                                |
| Strange | $K_S^0 \rightarrow \mu^+ \mu^-$                                                                                                  | $\begin{array}{l} K^+ \longrightarrow \pi^+ \nu \nu \\ K^0 \longrightarrow \pi^0 \nu \nu \end{array}$                                                                                           | $\Sigma^+ \rightarrow p \mu^+ \mu^-$                  |                                                                                                            |
| Charm   | $D^{0} \rightarrow \mu^{+} \mu^{-}$ $D^{0} \rightarrow e^{+} \mu^{-}$                                                            | $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$<br>$J/\psi \rightarrow D^0 e^+ e^-$                                                                                                                       | $\Lambda_c^{+} \rightarrow p \mu^+ \mu^-$             |                                                                                                            |
| Beauty  | $B^{0}{}_{(s)} \rightarrow \mu^{+}\mu^{-}$ $B^{0}{}_{(s)} \rightarrow \tau^{+}\tau^{-}$ $B^{0}{}_{(s)} \rightarrow e^{+}\mu^{-}$ | $B^{0} \rightarrow K^{(*)}\mu^{+}\mu^{-}/e^{+}e^{-}$ $B^{+} \rightarrow K^{(*)}\mu^{+}\mu^{-}/e^{+}e^{-}$ $B^{0}_{s} \rightarrow \varphi\mu^{+}\mu^{-}$ $B^{0} \rightarrow K^{*}\mu^{+}\mu^{-}$ | $\Lambda_b \rightarrow \Lambda  \mu^+ \mu^-$          | $B^{0} \rightarrow D^{(*)}\mu^{+}\nu / \tau^{+}\nu$ $B_{c}^{+} \rightarrow J/\psi\mu^{+}\nu / \tau^{+}\nu$ |

Lepton Flavour Non-Universality

### References

|         | Flavour Changing Neutral Current                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                | Charged Current                                                                                                                                                                      |
|---------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Leptonic                                                                                          | Mesonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Baryonic                                                                       | Semi-leptonic                                                                                                                                                                        |
|         | $s$ $\mu$ $\mu$ $\mu$ $\mu$ $\mu$                                                                 | $b \xrightarrow{W}_{\gamma/Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\overset{s}{\overbrace{}} \overset{\mu^-}{\underset{\mu^+}{\overset{\mu^+}}}$ | $b \qquad \qquad$                                             |
| Strange | LHCb, 1706.00758                                                                                  | NA62, Moriond 2018<br>KOTO, ICHEP 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LHCb, 1712.08606                                                               |                                                                                                                                                                                      |
| Charm   | LHCb, 1305.5059,<br>LHCb, 1512.00322                                                              | LHCb, 1707.08377<br>LHCb, 1806.10793<br>BESIII, 1710.02278<br>BESIII, 1802.09752<br>BESIII, 1802.04057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LHCb, 1712.07938                                                               |                                                                                                                                                                                      |
| Beauty  | CMS, 1307.5025<br>LHCb&CMS, 1411.4413<br>LHCb, 1703.05747<br>LHCb, 1710.04333<br>LHCb, 1703.02508 | BaBar, 1204.3933 (RK)<br>BaBar, 1508.07960 (Ang)<br>Belle, 0904.0770 (RK)<br>Belle, 1612.05014 (Q5')<br>CMS, 1507.08126 (Ang, B <sup>0</sup> )<br>CMS, 1710.02846 (Ang, B <sup>0</sup> )<br>CMS, 1806.00636 (Ang, B <sup>+</sup> )<br>ATLAS, 1805.04000 (B <sup>0</sup> )<br>LHCb, 1403.8044 (BR(B <sup>0</sup> ))<br>LHCb, 1406.6482 (R <sub>k</sub> )<br>LHCb, 1512.04442 (Ang)<br>LHCb, 1512.04442 (Ang)<br>LHCb, 1506.08777 (BR(B <sub>s</sub> ))<br>LHCb, 1612.06764 (phase)<br>LHCb, 1612.07818 (scalar search)<br>LHCb, 1705.05802 (R <sub>k</sub> *)<br>LHCb, 1804.07167 (B <sub>s</sub> <sup>0</sup> ) | LHCb, 1503.07138<br>LHCb, 1701.08705<br>LHCb, 1703.00256                       | BaBar, 1205.5442<br>Babar, 1303.0571<br>Belle, 1607.07923<br>Belle, 1612.00529<br>Belle, 1709.00129<br>Belle, 1803.06444<br>LHCb, 1506.08614<br>LHCb, 1508.08856<br>LHCb, 1709.02505 |

### References

|                     | Flavo                                                                                             | Charged Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           |                                                                                                                                                                                      |
|---------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Leptonic                                                                                          | Mesonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Baryonic                                                  | Semi-leptonic                                                                                                                                                                        |
|                     | $s$ $\mu$ $\mu$ $\mu$ $\mu$                                                                       | $b \xrightarrow{W}_{\gamma/Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\overset{s}{\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | $b \qquad \qquad$                                             |
| Strange             | LHCb, 1706.00758                                                                                  | NA62, Moriond 2018<br>KOTO, ICHEP 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LHCb, 1712.08606                                          |                                                                                                                                                                                      |
| Charm               | LHCb, 1305.5059,<br>LHCb, 1512.00322                                                              | LHCb, 1707.08377<br>LHCb, 1806.10793<br>BESIII, 1710.02278<br>BESIII, 1802.09752<br>BESIII, 1802.04057                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LHCb. 1712.07938                                          |                                                                                                                                                                                      |
| Beauty New since IC | СМЅ, 1307.5025<br>LHCb&CMS, 1411.4413<br>LHCb, 1703.05747<br>LHCb, 1710.04333<br>LHCb, 1703.02508 | BaBar, 1204.3933 (RK)<br>BaBar, 1508.07960 (Ang)<br>Balla, 0004.0770 (PK)<br>Belle, 1612.05014 (O5')<br>CMS, 1507.08126 (Ang, B <sup>0</sup> )<br>CMS, 1710.02846 (Ang, B <sup>0</sup> )<br>CMS, 1806.00636 (Ang, B <sup>+</sup> )<br>ATLAS, 1805.04000 (B <sup>0</sup> )<br>LHCb, 1403.8044 (BR(B <sup>0</sup> ))<br>LHCb, 1406.6482 (R <sub>K</sub> )<br>LHCb, 1512.04442 (Ang)<br>LHCb, 1512.04442 (Ang)<br>LHCb, 1612.06764 (phase)<br>LHCb, 1612.07818 (scalar search)<br>LHCb, 1705.05802 (R <sub>K</sub> *)<br>LHCb, 1804.07167 (B <sup>0</sup> ) | LHCb, 1503.07138<br>LHCb, 1701.08705<br>LHCb. 1703.00256  | BaBar; 1205.5442<br>Babar; 1303.0571<br>Belle, 1607.07923<br>Belle, 1612.00529<br>Belle, 1709.00129<br>Belle, 1803.06444<br>LHCb. 1506.08614<br>LHCb, 1708.08856<br>LHCb, 1709.02505 |

### References

|                       | Flavour Changing Neutral Current                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                | Charged Current                                                                                                                                                                      |
|-----------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Leptonic                                                                                          | Mesonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Baryonic                                                                       | Semi-leptonic                                                                                                                                                                        |
|                       | $s$ $\mu$ $\mu$ $\mu$ $\mu$                                                                       | $b \xrightarrow{W}_{\gamma/Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\overset{s}{\overbrace{}} \overset{\mu^-}{\underset{\mu^+}{\overset{\mu^+}}}$ | $b \qquad \qquad$                                             |
| Strange               | LHCb, 1706.00758                                                                                  | NA62, Moriond 2018<br>KOTO, ICHEP 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LHCb, 1712.08606                                                               |                                                                                                                                                                                      |
| Charm                 | LHCb, 1305.5059,<br>LHCb, 1512.00322                                                              | LHCb, 1707.08377<br>LHCb, 1806.10793<br>BESIII, 1710.02278<br>BESIII, 1802.09752<br>BESIII, 1802.04057                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LHCb, 1712.07938                                                               |                                                                                                                                                                                      |
| Beauty<br>New in 2018 | CMS, 1307.5025<br>LHCb&CMS, 1411.4413<br>LHCb, 1703.05747<br>LHCb, 1710.04333<br>LHCb, 1703.02508 | BaBar, 1204.3933 (RK)<br>BaBar, 1508.07960 (Ang)<br>Belle, 0904.0770 (RK)<br>Belle, 1612.05014 (Q5')<br>CMS, 1507.08126 (Ang, B <sup>0</sup> )<br>CMS, 1710 02846 (Ang, B <sup>0</sup> )<br>CMS, 1710 02846 (Ang, B <sup>+</sup> )<br>ATLAS, 1805.04000 (B <sup>0</sup> )<br>LHCb, 1403.8044 (BR(B <sup>v</sup> ))<br>LHCb, 1406.6482 (R <sub>k</sub> )<br>LHCb, 1512.04442 (Ang)<br>LHCb, 1512.04442 (Ang)<br>LHCb, 1612.06764 (phase)<br>LHCb, 1612.07818 (scalar search)<br>LHCb, 1705.05802 (R <sub>k</sub> *)<br>LHCb, 1804.07167 (B <sub>s</sub> <sup>0</sup> ) | LHCb, 1503.07138<br>LHCb, 1701.08705<br>LHCb, 1703.00256                       | BaBar, 1205.5442<br>Babar, 1303.0571<br>Belle, 1607.07923<br>Belle, 1612.00529<br>Belle, 1709.00129<br>Belle, 1803.06444<br>LHCb, 1506.08614<br>LHCb, 1708.08856<br>LHCb, 1709.02505 |

### NA62

- $K^+ \rightarrow \pi^+ v v$  (preliminary)
- Observed 1 event
  - expect 0.27 signal + 0.15 bkgd

$$B(K^{+} \rightarrow \pi^{+} \nu \overline{\nu}) < 14 \times 10^{-10} (95\% \text{ CL})$$
  

$$B(K^{+} \rightarrow \pi^{+} \nu \overline{\nu}) < 10 \times 10^{-10} (\text{expected})$$
  

$$B(K^{+} \rightarrow \pi^{+} \nu \overline{\nu}) = (1.5^{+1.3}_{-0.5}) \times 10^{-10} (\text{E787/E949, BNL})$$
  

$$B(K^{+} \rightarrow \pi^{+} \nu \overline{\nu}) = (0.84 \pm 0.10) \times 10^{-10} (\text{SM, A. Buras})$$
  
**KOTO**

- 
$$K^0 \rightarrow n^0 v v$$
 (preliminary)

- Relatively new field within LHCb
  - $K_S^0 \rightarrow \mu^+ \mu^-$





20 SM events expected before LS2 (2019)



- NA62
  - $K^+ \rightarrow \pi^+ v v$  (preliminary)

### KOTO

- $K^0 \rightarrow \pi^0 v v$  (preliminary)
- Observed 0 event
  - expect 0.40 ± 0.18 bkgd

 $B\left(K_L^0 \to \pi^0 \nu \overline{\nu}\right) < 30 \times 10^{-10} (90\% \text{ CL})$  $B\left(K_L^0 \to \pi^0 \nu \overline{\nu}\right) = 0.3 \times 10^{-10} (\text{SM})$ 

- Relatively new field within LHCb
  - $K_S^0 \rightarrow \mu^+ \mu^-$

-  $\Sigma^+ \rightarrow p \mu^+ \mu^-$ 





NA62

 $- K^+ \rightarrow \pi^+ v v$ 



### KOTO

-  $K^0 \rightarrow \pi^0 v v$  (preliminary)

- Relatively new field within LHCb
  - $K_S{}^0 \rightarrow \mu^+ \mu^-$
  - $\Sigma^+ \rightarrow p \mu^+ \mu^-$ 
    - 4.1 σ significance

 $\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (2.2^{+1.8}_{-1.3}) \times 10^{-8}$ 



- NA62
  - $K^+ \rightarrow \pi^+ v v$

- KOTO
  - $K^0 \rightarrow \pi^0 v v$  (preliminary)
- Relatively new field within LHCb
  - $K_S^0 \rightarrow \mu^+ \mu^-$
  - $\Sigma^+ \rightarrow p \mu^+ \mu^-$ 
    - Check HyperCP (E871) events
    - Fit at m=214.3 MeV:

$$\mathcal{B}(\Sigma^+ \to pX^0(\to \mu^+\mu^-)) < 1.4 \times 10^{-8} \ (1.7 \times 10^{-8})$$

### $\Sigma^+ \rightarrow pX(\rightarrow \mu^+\mu^-)$ ? HyperCP Coll. (b) Events/0.5 MeV/c<sup>2</sup> 2 Data HyperCP, PRL 94 (2005) 021801 0 2.5 215 217.5 Μ<sub>μ μ</sub> (MeV/c<sup>2</sup>) 212.5 LHCb 2011+2012: 3 fb<sup>-1</sup> Data $\Sigma^+ \rightarrow p \mu^+ \mu^- PS$ Model 230 240 250 220 260

LHCb, PRL 120 (2018) 221803

Weighted candidates / ( 2 MeV/ $c^2$  )

 $m_{\mu^+\mu^-}$  [MeV/ $c^2$ ] 018) 221803 20

### Charm

 $c \xrightarrow{W} b \\ \gamma/Z \qquad \mu^{-} \\ \mu^{+}$ 

- Enormous data set
  - 10<sup>9</sup> D-decays in Run-I

> Probing the up-quark sector



## Charm: $D^0 \rightarrow h^+h^-\mu^+\mu^-$

- Search with 2 fb<sup>-1</sup> of Run-1 data
  - Exploited  $D^{*+} \rightarrow D^0 \pi^+$  decays to suppress comb bkgd
  - Rarest charm decay ever observed

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7},$  $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7}.$ 





## Charm: $D^0 \rightarrow h^+h^-\mu^+\mu^-$

- Search with 2 fb<sup>-1</sup> of Run-1 data
  - Exploited  $D^{*+} \rightarrow D^0 \pi^+$  decays to suppress comb bkgd
  - Rarest charm decay ever observed



1500

LHCb

1000

 $m(\mu^{+}\mu^{-})$  [MeV/c<sup>2</sup>]

Charm: 
$$\Lambda_c^+ \rightarrow p\mu^+\mu^-$$

- Interesting region:
  - Non-resonant m( $\mu^+\mu^-$ ) region
  - exclude w(782) and  $\varphi(1020)$  region

No significant excess observed: 



 $ho^0/\omega 
ightarrow \mu\mu$ 

**LHCb** 

60

50

40

30

**Φ**→μμ

### Charm: $\psi \rightarrow D^0 e^+ e^-$ and $D \rightarrow h(h) e^+ e^- at BESIII$

•  $\Psi \rightarrow D^0 p e^+ e^-$  No significant excess observed:





|         | Flavo                                                                                                                            |                                                                                                                                                                                                     |                                              |                                                                                                            |
|---------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------|
|         | Leptonic                                                                                                                         | Mesonic                                                                                                                                                                                             | Baryonic                                     | Semi-leptonic                                                                                              |
|         | $s$ $\mu$ $\mu$ $\mu$ $\mu$                                                                                                      | $b \xrightarrow{W}_{\gamma/Z}$                                                                                                                                                                      | $s$ $\mu^ \mu^+$                             | $b \xrightarrow{W^-} \mu^-$                                                                                |
| Strange | $K_S^0 \rightarrow \mu^+ \mu^-$                                                                                                  | $K^+ \longrightarrow \pi^+ \nu \nu$<br>$K^0 \longrightarrow \pi^0 \nu \nu$                                                                                                                          | $\Sigma^+ \rightarrow p \mu^+ \mu^-$         |                                                                                                            |
| Charm   | $D^{0} \rightarrow \mu^{+} \mu^{-}$ $D^{0} \rightarrow e^{+} \mu^{-}$                                                            | $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$<br>$J/\psi \rightarrow D^0 e^+ e^-$                                                                                                                           | $\Lambda_c^{+} \rightarrow p \mu^+ \mu^-$    |                                                                                                            |
| Beauty  | $B^{0}{}_{(s)} \rightarrow \mu^{+}\mu^{-}$ $B^{0}{}_{(s)} \rightarrow \tau^{+}\tau^{-}$ $B^{0}{}_{(s)} \rightarrow e^{+}\mu^{-}$ | $B^{0} \rightarrow K^{(*)}\mu^{+}\mu^{-}/e^{+}e^{-}$ $B^{+} \rightarrow K^{(*)}\mu^{+}\mu^{-}/e^{+}e^{-}$ $B^{0}_{s} \rightarrow \varphi\mu^{+}\mu^{-}$ $B^{0}_{s} \rightarrow K^{*}\mu^{+}\mu^{-}$ | $\Lambda_b \rightarrow \Lambda  \mu^+ \mu^-$ | $B^{0} \rightarrow D^{(*)}\mu^{+}\nu / \tau^{+}\nu$ $B_{c}^{+} \rightarrow J/\psi\mu^{+}\nu / \tau^{+}\nu$ |

$$B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$$

### Historical endeavour!



$$B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$$

- » "Golden channel for SUSY"
- Decay discovered in 2015







A.Buras et al., Nucl.Phys.B659 (2003) 3



- Challenge: huge amount of events with two muons!
  - Background:  $BR(B \rightarrow X\mu^+) = 10^{-1}$
  - Signal:

- $BR(B_s^0 \rightarrow \mu^+ \mu^-) < 10^{-8}$
- Analysis largely data driven:
  - BDT event selection
    - Mainly lifetime
    - Calibrate efficiency on data with  $B \rightarrow nn$  decays
  - Mass resolution
    - Interpolate between  $J/\psi \rightarrow \mu\mu$  and  $Y \rightarrow \mu\mu$
  - Backgrounds
    - $b \rightarrow \mu + b \rightarrow \mu$
    - Semileptonic  $B^0$ ,  $B_s^0$ ,  $B_c^+$  and  $\Lambda_b^0$  decays
    - Misidentified *B→nn*
- Largest systematic uncertainty:
  - Relative production of  $B_s^0$  wrt  $B^0$  mesons,  $f_s/f_d$

LHCb coll., JHEP04 (2013) 001 LHCb coll., PRD85 (2012) 032008 Fleischer, Serra, NT, PRD 82, 034038



 $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ : Update 2017

- "Golden channel for SUSY"
- Update 2017 with 1.4 fb<sup>-1</sup> Run-2
  - 7.8σ significance





ATLAS, EPJ C76 (2016) 513

# $B^0 \rightarrow \mu^+\mu^-$ and $B^0_s \rightarrow \mu^+\mu^-$ : Update 2017

- BR( $B^0 \rightarrow \mu\mu$ ): the next search
  - 1.6σ above SM prediction



# $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ : effective lifetime

- More observables accessible
- New Physics (i.e. scalar couplings) can lead to different CP structure of final state
  - Affects the mix of long and short-living  $B_s^0$  mesons



# $B_{s}^{0} \rightarrow \tau^{+}\tau$ : First limit

- Analogous to  $B^0_s \rightarrow \mu^+ \mu^-$
- Helicity suppression less severe, BR x 200
- Enhanced by NP coupling to 3<sup>rd</sup> generation?
- Analysis:

  - Select  $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$  Exploit intermediate  $\rho^0 \rightarrow \pi^- \pi^+$  Normalisation  $B^0 \rightarrow D_s^- (K^- K^+ \pi^-) D^+ (K^- \pi^+ \pi^+)$

LHCb: 
$$B(B_s^0 \to \tau^+ \tau^-) < 5.2 \times 10^{-3} (90\% \text{ CL})$$
  
LHCb:  $B(B^0 \to \tau^+ \tau^-) < 1.6 \times 10^{-3} (90\% \text{ CL})$   
BaBar:  $B(B^0 \to \tau^+ \tau^-) < 4.1 \times 10^{-3} (90\% \text{ CL})$ 

BaBar, PRL 96 (2006) 241802

#### Normalisation: 1800 Candidates / $(5 \text{ MeV}/c^2)$ LHCb 1600 1400 + Data 1200 $-B^0 \rightarrow D^- D^+_s$ $\cdots B^0 \rightarrow D^{*-}D_s^+$ 1000 $B^0 \rightarrow D^- D_s^{*+}$ 800 Comb. bkg 600 400 200 5000 5100 5200 5300 5400 5500 5600 5700 $m_{D^-D^+_c}$ [MeV/c<sup>2</sup>] LHCb simulation



SM: 
$$B(B_s^0 \rightarrow \tau^+ \tau^-) = (7.7 \pm 0.5) \times 10^{-7}$$
  
SM:  $B(B^0 \rightarrow \tau^+ \tau^-) = (2.2 \pm 0.2) \times 10^{-7}$ 

Bobeth et al., PRL 112 (2014) 101801

 $B^{0}_{(s)} \rightarrow e^{+}\mu^{-}$ 

- Lepton Flavour Violation?
- Forbidden in SM

$$B(B_s^0 \to e^+ \mu^-) < 6.0 \times 10^{-9} (90\% \text{ CL})$$
$$B(B^0 \to e^+ \mu^-) < 1.0 \times 10^{-9} (90\% \text{ CL})$$



LHCb

 $m(e\mu)$  [MeV/c<sup>2</sup>]

1820 1830 1840 1850 1860 1870 1880 1890 1900 1910



Candidates / [1.7 MeV/c<sup>2</sup>  $D^{0} \rightarrow e^{+} \mu^{-}$ -7±15 events  $\mathcal{B}(D^0 \to e^{\pm} \mu^{\mp}) < 1.3 \times 10^{-8} \text{ at } 90\% \text{ CL}$ 

LHCb, Phys.Lett. B754 (2016) 167

LHCb, JHEP 03 (2018) 078, arXiv:1710.04111

### More Flavour Changing Neutral Currents: $B^0 \rightarrow K^* \mu \mu$

- Similar loop diagram!
- More observables
  - Invariant mass of µµ-pair
  - Angles of K and  $\mu$



### $B^0 \rightarrow K^* \mu^+ \mu^-$ : Joint effort

### Analysis efforts by Belle, LHCb, CMS, ATLAS


### Decay rates: $b \rightarrow sll$



### Decay rates: $b \rightarrow sll$



### $B^0 \rightarrow K^{0*}\mu^+\mu^-$ : angular analysis

- Similar loop diagram!
- More observables
  - Invariant mass of µµ-pair
  - Angles of K and  $\mu$



- For example: P<sub>5</sub>':
  - asymmetry of red and blue:
    - (corrected for  $\sqrt{F_L(1-F_L)}$ )



### $B^0 \rightarrow K^{0*}\mu^+\mu^-$ : P<sub>5</sub>'



### $B^0 \rightarrow K^{0*}\mu^+\mu^-$ : P<sub>5</sub>'



## $B^0 \rightarrow K^{0*}\mu^+\mu^-$ : P<sub>5</sub>' Joint effort!

- Similar loop diagram!
- More observables
  - Invariant mass of µµ-pair
  - Angles of K and  $\mu$



- Debate on SM calculation
  - Non-perturbative "charm loop" effects?

- LHCb, JHEP02 (2016) 104
- Belle, PRL 118 (2017) 111801
- □ ATLAS-CONF-2017-023
- CMS, PLB 81 (2018) 517

## $B^0 \rightarrow K^{0*}\mu^+\mu^-$ : P<sub>5</sub>' Joint effort!

- Similar loop diagram!
- More observables

- Invariant mass of µµ-pair
- Angles of K and  $\mu$

Debate on SM calculation



– Non-perturbative "charm loop" effects?

CMS, PLB 781 (2018) 517 LHCb, JHEP02 (2016) 104

♦ Belle, PRL 118 (2017) 111801

### $B^0 \rightarrow K^{0*}\mu^+\mu^-$ : P<sub>5</sub>' Joint effort!



### $B^0 \rightarrow K^{0*}\mu^+\mu^-: P_5'$

- Similar loop diagram!
- More observables E.

- Invariant mass of µµ-pair
- Angles of K and  $\mu$

Debate on SM calculation



45

Historical example



• Both are correct, depending on the energy scale you consider

Historical example





• Analog: Flavour-changing neutral current





- Effective coupling can be of various "kinds"
  - Vector coupling
  - Axial coupling
  - Left-handed coupling (V-A)
  - Right-handed (to quarks)

 $\mathcal{H}_{\text{eff}} = \frac{G_{\text{F}}}{\sqrt{2}} V_{\text{CKM}} \sum_{i} C_{i}(\mu) Q_{i}$ 

Analog: <u>Flavour-changing neutral current</u>





Cq

 $C_{10}$ 

- Effective coupling can be of various "kinds"
  - Vector coupling:
  - Axial coupling:
  - Left-handed coupling (V-A): C<sub>9</sub>-C<sub>10</sub>
  - Right-handed (to quarks):  $C_9'$ ,  $C_{10}'$ , ...



• Analog: Flavour-changing neutral current







#### $B^+ \rightarrow K^+ \mu^+ \mu^-$ : in detail

 $\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) = (4.37 \pm 0.15 \,(\text{stat}) \pm 0.23 \,(\text{syst})) \times 10^{-7}$ 

- Contributions from  $b \rightarrow sll$ 
  - $B^+ \rightarrow K^+ \mu^+ \mu^-$
- Contributions from  $b \rightarrow scc$ 
  - e.g.  $B^+ \rightarrow K^+ \varphi$ ,  $B^+ \rightarrow K^+ J/\psi$ ,  $B^+ \rightarrow K^+ \psi(2S)$ , ...
- Understand interference
  - Positive or negative?
  - More general: phase difference? ±90°
    - Small interference
- Angular analysis:

Consistent with no assymetry



Resonance

 $J/\psi$ 

 $\psi(2S)$ 

SM  $c\bar{c}$  loop



#### LHCb Coll., EPJ C77 (2017) 161

 $m_{\mu\mu}^{\rm rec}$  [MeV/ $c^2$ ]

 $B_{s}^{0} \rightarrow K^{0*}\mu^{+}\mu^{-}$ 





|         | Flavo                                                                                                                            |                                                                                                                                                                                                         |                                               |                                                                                                                                                            |
|---------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Leptonic                                                                                                                         | Mesonic                                                                                                                                                                                                 | Baryonic                                      | Semi-leptonic                                                                                                                                              |
|         | $s$ $\mu$ $\mu$ $\mu$ $\mu$                                                                                                      | $b \xrightarrow{W}_{\gamma/Z}$                                                                                                                                                                          | $s$ $\mu^ \mu^+$                              | $b \xrightarrow{W^-} \qquad \qquad$ |
| Strange | $K_S^0 \rightarrow \mu^+ \mu^-$                                                                                                  | $K^+ \longrightarrow \pi^+ \nu \nu$<br>$K^0 \longrightarrow \pi^0 \nu \nu$                                                                                                                              | $\Sigma^+ \rightarrow p \mu^+ \mu^-$          |                                                                                                                                                            |
| Charm   | $D^{0} \rightarrow \mu^{+} \mu^{-}$ $D^{0} \rightarrow e^{+} \mu^{-}$                                                            | $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$<br>$J/\psi \rightarrow D^0 e^+ e^-$                                                                                                                               | $\Lambda_c^{+} \rightarrow p \mu^+ \mu^-$     |                                                                                                                                                            |
| Beauty  | $B^{0}{}_{(s)} \rightarrow \mu^{+}\mu^{-}$ $B^{0}{}_{(s)} \rightarrow \tau^{+}\tau^{-}$ $B^{0}{}_{(s)} \rightarrow e^{+}\mu^{-}$ | $B^{0} \rightarrow K^{(*)}\mu^{+}\mu^{-}/e^{+}e^{-}$ $B^{+} \rightarrow K^{(*)}\mu^{+}\mu^{-}/e^{+}e^{-}$ $B^{0}{}_{s} \rightarrow \varphi\mu^{+}\mu^{-}$ $B^{0}{}_{s} \rightarrow K^{*}\mu^{+}\mu^{-}$ | $\Lambda_b \rightarrow \Lambda \ \mu^+ \mu^-$ | $B^{0} \rightarrow D^{(*)}\mu^{+}\nu / \tau^{+}\nu$ $B_{c}^{+} \rightarrow J/\psi\mu^{+}\nu / \tau^{+}\nu$                                                 |

Lepton Flavour Non-Universality

#### $R_{K}: B^{+} \rightarrow K^{+} \mu^{+} \mu^{-} \text{ and } B^{+} \rightarrow K^{+} e^{+} e^{-}$

- Similar loop diagram!
- Measure ratio µ/e
- SM expectation: R<sub>K</sub>=1

$$R_K = \frac{\Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\Gamma(B^+ \to K^+ e^+ e^-)}$$



#### $R_{K}: B^{+} \rightarrow K^{+} \mu^{+} \mu^{-} \text{ and } B^{+} \rightarrow K^{+} e^{+} e^{-}$



#### $R_{K^*}$ : $B^0 \rightarrow K^{0^*} \mu^+ \mu^-$ and $B^0 \rightarrow K^{0^*} e^+ e^-$



"non-universal" ?





### **R<sub>K\*</sub>: Cross checks**

- Check with J/ψ
  - Unity with 4.5% at 1σ
- Check with  $\psi(2S)$ 
  - Unity within 2% at 1σ
- Check BR( $B^0 \rightarrow K^* \gamma( \rightarrow ee)$ )
  - Agrees within 15% at 2σ

$$r_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to \mu^+\mu^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))} = 1.043 \pm 0.006(\text{stat}) \pm 0.045(\text{syst})$$

$$R_{\psi(2S)} = \frac{\mathcal{B}(B^0 \to K^{*0}\psi(2S)(\to \mu^+\mu^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to \mu^+\mu^-))} \left/ \frac{\mathcal{B}(B^0 \to K^{*0}\psi(2S)(\to e^+e^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))} \right|$$

$$r_{\gamma} = \frac{\mathcal{B}(B^0 \to K^{*0}\gamma)}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))}$$

- Cross checked with earlier  $d\Gamma/dq^2(B^0 \rightarrow K^* \mu \mu)$
- LHCb Coll., JHEP 1611 (2016) 47 Erratum: JHEP 1704 (2017) 14

- Consistent
- Data vs simulation:



#### $B^0 \rightarrow K^{0^*}e^+e^-$ : Difference in angular analysis?

- So, decay rate different between  $\mu^+\mu^-$  and  $e^+e^-$  final state?
- What about angular distribution?
  - $P_5'$  deviates in  $\mu^+\mu^-$  final state
- >  $P_5'$  for  $B^0 \rightarrow K^{0*}e^+e^-$  seems in better agreement with expectations:



### More LFNU? Semileptonic decays: b→clv



- Multiple experiments:
- Multiple c-modes:
- Multiple tau final states:
- Multiple tags:

Belle, BaBar, LHCb

- *D*, *D*\*, *J*/ψ
- μ, 1-prong, 3-prong
- semileptonic, hadronic

B



 $\mu^+/\tau^+$ 



 $\mathcal{R}(J/\psi) = 0.71 \pm 0.17 \,(\text{stat}) \pm 0.18 \,(\text{syst})$ 

#### Outlook

| 2019             | 2020            | 2021                  | 2022                 | 2023                         | 2024         | 2025   | 2026                                     | 2027 | 2028               | 2029 | 2030                                                                 | 2031 | 2032 | 203+               |
|------------------|-----------------|-----------------------|----------------------|------------------------------|--------------|--------|------------------------------------------|------|--------------------|------|----------------------------------------------------------------------|------|------|--------------------|
|                  |                 | Run III               |                      |                              |              | R      | Run IV                                   |      |                    |      | Run V                                                                |      |      |                    |
| LS2              |                 |                       |                      |                              |              | LS3    |                                          |      |                    |      | LS4                                                                  |      |      |                    |
| LHCb<br>UPGR     | 40 MHz<br>ADE I | Hz $L = 2 x  10^{33}$ |                      | LHCb<br>Consolidate: Upgr Ib |              | L      | $L = 2 x 10^{33}$<br>50 fb <sup>-1</sup> |      | LHCb<br>UPGRADE II |      | $\begin{array}{c} L = 1 - 2x \ 10^{34} \\ 300 \ fb^{-1} \end{array}$ |      |      |                    |
| ATLAS<br>Phase I | Upgr            | $L = 2 x  10^{34}$    |                      | ATLAS<br>Phase II UPGRADE    |              | L<br>L | <b>HL-LHC</b> $L = 5 \times 10^{34}$     |      | ATLAS              |      | <b>HL-LHC</b> $L = 5 \times 10^{34}$                                 |      |      |                    |
| CMS<br>Phase I   | Upgr            | -                     | 300 fb <sup>-1</sup> |                              | CMS<br>Phase | II UPG | RADE                                     |      |                    |      | CMS                                                                  |      | 3000 | ) fb <sup>-1</sup> |
| Belle<br>II      | 5 ab-1          |                       | L=8.                 | x 10 <sup>35</sup>           | 50 0         | ab-1   | LHC schedule: Frederick Bordry, Jun 2015 |      |                    |      |                                                                      |      |      |                    |
|                  |                 |                       |                      |                              |              |        |                                          |      |                    |      |                                                                      |      |      |                    |

- Belle II
  - L= $5x10^{33}$  cm<sup>-2</sup>s<sup>-1</sup> achieved!
  - Physics with VXD in 2019



R. Cheaib, Moriond, 12 Mar 2018, arXiv:1802.01366

### Outlook



LHCb, "Physics Case for Upgrade II" (in preparation)

#### LHCb

- Fully exploit HL-LHC for flavour physics
  - x10 with respect to Upgrade I
- Consolidate in LS3; major upgrade in LS4
  - Expression of Interest issued in 2017
- Feasibility study performed by LHC experts & Physics case in preparation

### Outlook



LHCb, "Physics Case for Upgrade II" (in preparation)

- LHCb
  - Fully exploit HL-LHC for flavour physics
    - x10 with respect to Upgrade I
  - Consolidate in LS3; major upgrade in LS4
    - Expression of Interest issued in 2017
  - Feasibility study performed by LHC experts & Physics case in preparation



- Precision measurements to scrutinize the Standard Model
- Precision measurements only way to reach very high mass scales
- Precision measurements are not yet precise enough

Shahram Rahatlou (Monday): "Leptoquarks are kind of trending right now."



# The need for more precision

Imagine if Fitch and Cronin had stopped at the 1% level, how much physics would have been missed"

– A.Soni

• "A special search at Dubna was carried out by Okonov and his group. They did not find a single  $K_L^0 \rightarrow \pi^+\pi^-$  event among 600 decays into charged particles (Anikira et al., JETP 1962). At that stage the search was terminated by the administration of the lab. The group was unlucky."

– L.Okun

(remember:  $B(K_{L}^{0} \rightarrow \pi^{+}\pi^{-}) \approx 2 \ 10^{-3})$ 

### **Playing field: heavy flavour**

CMS

decays



### **Radiative B decays**

#### LHCb:



Lifetime sensitive to photon polarization

- 
$$\mathcal{A}^{\Delta}$$
:  $\mathcal{P}(t) \propto e^{-\Gamma_s t} \{ \cosh\left(\Delta\Gamma_s t/2\right) - \mathcal{A}^{\Delta} \sinh\left(\Delta\Gamma_s t/2\right) \}$ 

$$\mathcal{A}^{\Delta} = -0.98^{+0.46}_{-0.52}^{+0.23}_{-0.20}$$
$$\mathcal{A}^{\Delta}_{\rm SM} = 0.047^{+0.029}_{-0.025}$$



W

#### Belle:

•  $B^0 \rightarrow K^0 * \gamma$  and  $B^+ \rightarrow K^+ \gamma$ : isospin asymmetry at 3.1 $\sigma$ 

 $\Delta_{0+} = (+6.2 \pm 1.5 \pm 0.6 \pm 1.2)\%$ 

•  $B^0 \rightarrow K_S^0 \eta \gamma_R$ : photon polarization, time-dependent

 $S = -1.32 \pm 0.77(\text{stat.}) \pm 0.36(\text{syst.}) \\ \mathcal{A} = -0.48 \pm 0.41(\text{stat.}) \pm 0.07(\text{syst.}) \\ B^0 \rightarrow X_s \gamma: \text{ isospin asymmetry, incl. } \Delta A_{CP}$ 

$$\Delta_{0-} = (+1.70 \pm 1.39 \pm 0.87 \pm 1.15)\%$$
  
$$\Delta A_{CP} = (+1.26 \pm 2.40 \pm 0.67)\%,$$



Belle 2004 78fb +1.2 ± 4.4 ± 2.6

Babar 2009 347fb +6.6 ± 2.1 ± 2.2

PDG 2017

+5.2 ± 2.6

Belle 2017 711fb

-5

 $+6.2 \pm 1.5 \pm 1.3$ 

-10

Belle, Phys.Rev.Lett. 119 (2017) 191802

 $\Delta_{0+} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)}$ 

0

 $\Delta_{0+}(\mathsf{B} \to \mathsf{K}^* \gamma)$ 

5

10

<sup>8</sup>[%]



### LHCb = more than flavour

#### pdfs, jets, heavy-ion, EW, exotic states...





## What NP could it be?

 If interpreted as NP signals, both set of anomalies are <u>not in contradiction</u> among themselves & with existing low- & high-energy data.
 <u>Taken together</u>, they point out to NP coupled mainly to 3<sup>rd</sup> generation, with a flavor structure connected to that appearing in the SM Yukawa couplings

> G. Isidori, Implications workshop, CERN, 10 Nov 2017 https://indico.cern.ch/event/646856/timetable/

- Indirect measurements
- What are the (anomalous) measurements?
  - FCNC: b→sll
  - LFNU:  $b \rightarrow sll$  and  $b \rightarrow clv$
- What are the interpretations?
Most popular models: Z' or Leptoquark



#### Step 1: Effective theory



| $\mathcal{L}_{	ext{eff}} = \mathcal{L}_{	ext{SM}}$ | $\mathbf{I} - \frac{1}{v^2} \lambda_{ij}^q \lambda_{\alpha\beta}^\ell \left[ C_T \right] (0)$ | $\bar{Q}_L^i \gamma_\mu \sigma^a Q_L^j) (\bar{L}_L^\alpha \gamma^\mu \sigma^a L_L^\beta) + C_S \ (\bar{Q}_L^i \gamma^\mu \sigma^a L_L^\beta) + C_S \ (\bar{Q}_L$ | $(\mu Q_L^j)(ar{L}_L^lpha\gamma^\mu$ | $L_L^{eta})\Big]$                         |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|
| Observable                                         | Experimental bound                                                                            | Linearised expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.06                                 |                                           |
| $\overline{R_{D^{(*)}}^{\tau\ell}}$                | $1.237 \pm 0.053$                                                                             | $1 + 2C_T (1 - \lambda_{sb}^q V_{tb}^* / V_{ts}^*) (1 - \lambda_{\mu\mu}^{\ell} / 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                 | $U_3$ $B'$ $3\sigma$ $U_1$                |
| $\Delta C_9^\mu = -\Delta C_{10}^\mu$              | $-0.61 \pm 0.12$ [36]                                                                         | $-rac{\pi}{lpha_{ m em}V_{tb}V_{ts}^*}\lambda_{\mu\mu}^\ell\lambda_{sb}^q(C_T+C_S)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.04                                 | 20                                        |
| $R_{b\to c}^{\mu e} - 1$                           | $0.00 \pm 0.02$                                                                               | $2C_T(1-\lambda_{sb}^q V_{tb}^*/V_{ts}^*)\lambda_{\mu\mu}^\ell$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02                                 | \ 🖌 🕴                                     |
| $B_{K^{(*)}\nu\bar{\nu}}$                          | $0.0 \pm 2.6$                                                                                 | $1 + \frac{2}{3} \frac{\pi}{\alpha_{\rm em} V_{tb} V_{ts}^* C_{\mu}^{\rm SM}} (C_T - C_S) \lambda_{sb}^q (1 + \lambda_{\mu\mu}^{\ell})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ئ0.00                                |                                           |
| $\delta g^Z_{	au_I}$                               | $-0.0002 \pm 0.0006$                                                                          | $0.033C_T - 0.043C_S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                 |                                           |
| $\delta q_{\mu}^Z$                                 | $-0.0040 \pm 0.0021$                                                                          | $-0.033C_T - 0.043C_S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.02                                |                                           |
| $ q_{\tau}^W/q_{\ell}^W $                          | $1.00097 \pm 0.00098$                                                                         | $1 - 0.084C_T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.04                                |                                           |
| $\mathcal{B}(\tau \to 3\mu)$                       | $(0.0 \pm 0.6) \times 10^{-8}$                                                                | $2.5 \times 10^{-4} (C_S - C_T)^2 (\lambda_{\tau\mu}^\ell)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.06                                | $s_{3}$<br>0.04 -0.02 0.00 0.02 0.04 0.06 |

#### Step 2: Simplified models



| $SU(2)_L$ -        | singlet vector leptoquark, $U_1^{\mu} \equiv (3, 1, 2/3)$                                                                    |
|--------------------|------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                                                                              |
| $\mathcal{L}_U =$  | $-\frac{1}{2}U_{1,\mu\nu}^{\dagger}U^{1,\mu\nu} + M_U^2U_{1,\mu}^{\dagger}U_1^{\mu} + g_U(J_U^{\mu}U_{1,\mu} + \text{h.c.})$ |
| $J_U^{\mu} \equiv$ | $eta_{ilpha} \; ar{ar{Q}}_i \gamma^\mu L_lpha \;\;.$                                                                         |

 $C_T$ 

Many models! See e.g.:



Courtesy, Geng CHEN, ICHEP 2018, 7 July 2018

- Ingredients
  - NP: large coupling  $b \rightarrow c \tau v$ 
    - Large coupling to 3<sup>rd</sup> gen leptons
    - Left-handed coupling (no RH neutrino)
  - NP: small (non-vanishing) coupling  $b \rightarrow s \mu \mu$ 
    - Small coupling to 2<sup>nd</sup> gen leptons
    - Left-handed coupling (from C<sub>9</sub>)



- Ingredients
  - NP: large coupling  $b \rightarrow c \tau v$ 
    - Large coupling to 3<sup>rd</sup> gen leptons
    - Left-handed coupling (no RH neutrino)
  - NP: small (non-vanishing) coupling  $b \rightarrow s \mu \mu$ 
    - Small coupling to 2<sup>nd</sup> gen leptons
    - Left-handed coupling (from  $C_9$ )





- Radiative constr.  $\tau \rightarrow \mu v v$
- $B_s^0$  mixing
- $B_c^+$  lifetime

(No tree level NP: small bs implies large *tv*)

(Scalar LQ increases  $BR(B_c^+ \rightarrow \tau^+ v)$ )

Vector LQ favoured over Scalar LQ or Z'

 $SU(2)_L$ -singlet vector leptoquark emerges as a particularly simple and successful framework.

- Many more experimental handles; predictions can be checked!
- Universal for all b→стv:
  - Accurate R(D\*), R(J/ $\psi$ ), ...
- Strong coupling to *tau's*:
  - Measure e.g.  $B^0 \rightarrow K^* \tau \tau$
- LFNU linked with LFV:
  - Look for e.g.  $B^0 \rightarrow K^* \tau \mu$
  - BR(τ→μμμ)~10<sup>-9</sup>
- c, u symmetry:
  - Study suppressed semileptonic  $\left| \frac{\Gamma(\Sigma = \mu \text{ tr})/\Gamma_{SM}}{\Gamma(B \rightarrow \pi \mu v)/\Gamma_{SM}} \right| = \frac{\Gamma(\Sigma = \mu \text{ tr})/\Gamma_{SM}}{\Gamma(\Lambda_b \rightarrow p \mu v)/\Gamma_{SM}} = 1$
- B<sub>s</sub> mixing
  - O(1-10%) effect on  $\Delta m_s$

| $\frac{R_{D}}{(R_{D})_{SM}} = \frac{\Gamma(B \rightarrow D^{*}\tau \nu)/\Gamma_{SM}}{\Gamma(B \rightarrow D^{*}\mu \nu)/\Gamma_{SM}} = \frac{\Gamma(B_{c} \rightarrow \psi \tau \nu)/\Gamma_{SM}}{\Gamma(B_{c} \rightarrow \psi \mu \nu)/\Gamma_{SM}} = \frac{\Gamma(\Lambda_{b} \rightarrow \Lambda_{c}\tau \nu)/\Gamma_{SM}}{\Gamma(\Lambda_{b} \rightarrow \Lambda_{c}\mu \nu)/\Gamma_{SM}} = \dots$ |                                                                |                                   |                             |                              |                           |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------|-----------------------------|------------------------------|---------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |                                   |                             |                              |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                         | μμ (ee)                                                        | ττ                                | VV                          | τμ                           | μе                        |  |  |
| $b \rightarrow s$                                                                                                                                                                                                                                                                                                                                                                                       | $R_K, R_{K^*}$                                                 | $B \rightarrow K^{(*)} \tau \tau$ | $B \rightarrow K^{(*)} vv$  | $B \rightarrow K \tau \mu$   | $B \rightarrow K \mu e$   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                         | O(20%)                                                         | $\rightarrow 100 \times SM$       | O(1)                        | $\rightarrow \sim 10^{-6}$   | ???                       |  |  |
| $b \rightarrow d$                                                                                                                                                                                                                                                                                                                                                                                       | $B_d \rightarrow \mu\mu$                                       | $B \rightarrow \pi \tau \tau$     | $B \rightarrow \pi \nu \nu$ | $B \rightarrow \pi \tau \mu$ | $B \rightarrow \pi \mu e$ |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                         | $B \rightarrow \pi \mu \mu$<br>$B \rightarrow K^{(*)} \mu \mu$ | $\rightarrow 100 \times SM$       | O(1)                        | $\rightarrow \sim 10^{-7}$   | ???                       |  |  |
| $O(20\%) [R_{\nu}=R_{-}]$                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                   |                             |                              |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |                                   |                             |                              |                           |  |  |
| $\Gamma(B \to \pi \tau v)/\Gamma_{cov}$ $\Gamma(\Lambda_{t} \to p \tau v)/\Gamma_{cov}$ $\Gamma(B \to K^* \tau v)/\Gamma_{cov}$ R <sub>D</sub>                                                                                                                                                                                                                                                          |                                                                |                                   |                             |                              |                           |  |  |

 $\Gamma(B_s \rightarrow K^* \mu \nu) / \Gamma_{SM}$ 

 $(R_D)_{SM}$ 

Buttazzo, ( B-physics a JHEP 1711

Greljo, Isidori,

Marzocca

- Many more experimental handles; predictions can be checked!
- High p<sub>T</sub> signatures?



### More LFNU? Semileptonic decays: b→clv



 $\mu^+/\tau^+$