

cLFV/g-2/EDM Experiment

Satoshi MIHARA (KEK-IPNS/J-PARC/Sokendai)

Congratulations FNAL g-2!

Congratulations FNAL g-2!

PHYSICS

CONFERENCE ON

ERNATIONAL

2018

Outline

Introduction

PHYSICS

ERENCE ON

- Muon cLFV experiments
 - MEG & MEG II, COMET, Mu2e, and Mu3e
- Muon g-2/EDM experiments
- Tau cLFV experiments
- Summary and Outlook

Charged Lepton Flavor Violation

- cLFV rate in the Standard Model with non-zero neutrino mass is too small to be observed in experiments; O(BR) $< 10^{-50}$

- No SM Physics Background
- Observation = clear evidence of NP
- Motivated by many kinds of new physics models BSM

Charged Lepton Flavor Violation

- cLFV rate in the Standard Model with non-zero neutrino mass is too small to be observed in experiments; O(BR) $< 10^{-50}$
 - No SM Physics Background
 - Observation = clear evidence of NP
- Motivated by many kinds of new physics models BSM

Charged Lepton Flavor Violation

- cLFV rate in the Standard Model with non-zero neutrino mass is too small to be observed in experiments; O(BR) $< 10^{-50}$
 - No SM Physics Background
 - Observation = clear evidence of NP
- Motivated by many kinds of new physics models BSM

μ

Charged Lepton Flavor Violation

- cLFV rate in the Standard Model with non-zero neutrino mass is too small to be observed in experiments; O(BR) $< 10^{-50}$
 - No SM Physics Background
 - Observation = clear evidence of NP
- Motivated by many kinds of new physics models BSM

- cLFV rate in the Standard Model with non-zero neutrino mass is too small to be observed in experiments; O(BR) < 10^{-50}
 - No SM Physics Background

PHYSICS

20

- Observation = clear evidence of NP
- Motivated by many kinds of new physics models BSM

- cLFV rate in the Standard Model with non-zero neutrino mass is too small to be observed in experiments; O(BR) $< 10^{-50}$
 - No SM Physics Background

PHYSICS

20

Щ

- Observation = clear evidence of NP
- Motivated by many kinds of new physics models BSM

- cLFV rate in the Standard Model with non-zero neutrino mass is too small to be observed in experiments; O(BR) < 10^{-50}
 - No SM Physics Background

PHYSICS

20

Щ

- Observation = clear evidence of NP
- Motivated by many kinds of new physics models BSM

...and muon g-2

PHYSICS

20

•The Lande's *g* factor is 2 in •In quantum field theory, *g* tree level (Dirac equation) factor gets corrections:

...and muon g-2

PHYSICS

N0

FERENCE

•The Lande's *g* factor is 2 in •In quantum field theory, *g* tree level (Dirac equation) factor gets corrections:

MEG & MEG II

Search for $\mu^+ \rightarrow e^+ \gamma$ at Paul Scherrer Institute

- World's most intense DC muon beam at PSI
- MEG, MEG II (and Mu3e) require

PHYSICS

ERENCE ON

- Low momentum (surface muon at 29MeV/c)
- High intensity continuous beam as they observe multi-particles in the final state

PSI Ring Cyclotron 590MeV, 1.4MW

EPJ C 76 (2016) 434

- Confidence interval calculation by following the Feldman-Cousins approach with the profile-likelihood ratio ordering.
- Profile-likelihood ratios all consistent with a null-signal hypothesis.

Br(μ →e γ) < 4.2x10⁻¹³ @ 90% C.L.

A. Papa 7/Jul S. Ogawa 7/Jul Detector Upgrade: MEG II

PHYSICS

z 0

FERENCE

Target Sensitivity : 6x10-14 in 3 years running

COMET & Mu2e

μ -e conversion searches

µ-e Conversion Search

 μ -e conversion

PHYSICS

 $\mu^- + (A,Z) \rightarrow e^- + (A,Z)$

Atomic capture of μ^-

- Decay in orbit (DIO)
 - · electron gets recoil energy
- Capture by nucleus
 - · resultant nucleus is different

Muon Decay In Orbit (39%) $\tau \mu^{N} < \tau \mu^{free}$ ($\tau \mu^{AI} = 860$ nsec)

 μ puclear muon capture (61%) $\rightarrow e \nu \overline{\nu}$

 $\mu^- + (A,Z) \rightarrow \nu_{\mu} + (A,Z-1)$

 μ -e conversion

 $E_{\mu e}(AI) \sim m_{\mu} - B_{\mu} - E_{rec} = 104.97 MeV$

- B_{μ}: binding energy of the 1s muonic atom

µ-e Conversion

PHYSICS

Electron Energy Spectrum

µ-e Conversion Signal and Background

Rext=

- Signal
 - Electron from the muon stopping target with a characteristic Arbitrary energy with a delayed timing
- Background
 - Decay in Orbit Electron
 - Radiative muon capture
 - Cosmic-ray
 - and others

Tiny leakage of protons in between consecutive pulses can cause a background through Beam Pion Capture process:

$$\pi^-+(A,Z) \to (A,Z-1)^* \to \gamma + (A,Z-1)$$

$$\gamma \rightarrow e^+ e^-$$

Number of protons between pulses

Number of protons in a pulse

Time (µs) 0 1.1 μs

PHYSICS

More Muons

 Pion production in magnetic field

PHYSICS

ENCE ON

r

ш

- Pion/muon collection using gradient magnetic field
- Beam transport with curved solenoid magnets

Same scheme used in COMET Phase-II
 electron spectrometer

D. Grigoriev 7/Jul

COMET at J-PARC

• Target S.E.S. 2.6×10⁻¹⁷

PHYSICS

CONFERENCE ON

- 8GeV Pulsed proton beam at J-PARC
 - Insert empty buckets for necessary pulsepulse width
 - bunched-slow extraction
- pion production target in a solenoid magnet
- Muon transport & electron momentum analysis using C-shape solenoids
 - smaller detector hit rate
 - need compensating vertical field
- Tracker and calorimeter to measure electrons
- COMET decided to take a staging approach to realize this. The collaboration is making an effort to start physics DAQ as early as possible under this.
 - Phase-I 8GeV-3.2kW, < 10⁻¹⁴
 - Phase-II 8GeV-56kW, < 10⁻¹⁶

CONFERENCE ON

ERNATIONAL

ŝ

2018

CONFERENCE ON

ERNATIONAL

XXX

2018 2018

M. Moritsu 7/Jul B. Yeo 6/Jul, M. Lee 6/Jul

COMET Phase-I Status

Physics Detector

PHYSICS

CONFERENCE ON

17

- CDC and trigger counters
- Optimized for Phase-I physics
- Superconducting cells
 CDC outer will
 CDC

 CDC endrie
 Suppringerger

 Big Suppringerger
 Suppringerger

 Louer wildow
 Super endoscepe

- Beam measurement Detector
 - Straw-tube tracker and LYSO Ecal
 - Prototype of Phase-II detector

8GeV Acceleration Test and Extinction Factor Measurement

8GeV acceleration and extraction to the abort line (FX) and Hadron Hall (SX)

PHYSICS

NO

NFERENCE

- 4 bunches out of 9 bunches are filled with protons to realize the COMET beam time structure
 - Same number of protons per bunch with that of Phase-I beam
- Injection kicker timing is shifted to kick in only the filled bunch
- $\cdot\,$ SX with RF HV on to keep the bunched time structure
- $R_{ext} = 10^{-11-12}$ in FX and < $6x10^{-11}$ in SX, possible to improve even further with more accelerator study time in future

G. Pezzullo 7/Jul

Mu2e at FNAL

- 8GeV protons from FNAL accelerator complex
- Re-bunching in the Delivery Ring

PHYSICS

CONFERENCE ON

- Injected onto the tungsten target located in Capture Solenoid magnet
- Single event sensitivity: 3x10⁻¹⁷
- DAQ starts in 2022, 1 yr commissions and 3 yrs running.

Target remote handling

CR Veto

Extinction monitor

20

ร

2018

H. Natori 7/Jul

Yet Another μ -e Conversion Search at J-PARC

Design of DeeMe

Pion production by accelerated proton hits on target

2) π⁻ → μ⁻ + ν_μ

CONFERENCE ON A a CONFERENCE CONFERENCE

- µ- trapped by a nuclear. Muonic atom formation
- Particles emitted from muonic atom
- Extract electron via secondary beam line and measure the momentum

ICHEP 2018, 2018/July/07 @ COEX, Seoul

Mu3e

$\mu \rightarrow eee$ Search using DC Muon Beam

- Another channel sensitive to cLFV with DC muon beam
 - 1.0x10⁻¹² (90% C.L.) by SINDRUM
 - Goal : 10⁻¹⁶ in 2 steps

PHYSICS

NO

NFERENCE

- Measure all electron tracks • with extreme precision
 - Background source
 - $\mu^+ \rightarrow e^+ e^+ e^- \nu \nu$
 - Accidental overlap
 - Beamline is shared with MEG

CONFERENCE ERNATIONAL

2 0

PHYSICS

Muon g-2 & EDM

 In uniform magnetic field, muon spin rotates ahead of momentum due to g-2≠0

General form of spin precession vector:

NO

RENCE

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

In uniform magnetic field, muon spin rotates ahead of momentum due to g-2≠0

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

BNL/FNAL approach
 $\gamma = 29.3 \text{ (P=3.09 GeV/c)}$

In uniform magnetic field, muon spin rotates ahead of momentum due to g-2≠0

General form of spin precession vector:

PHYSICS

NO

ENCE

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$
BNL/FNAL approach
$$r = 29.3 \text{ (P=3.09 GeV/c)}$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

Continuation at FNAL with 0.1 ppm precision

Muon anomalous magnetic moment (9-2)

a_μ-11 659 000 (10⁻¹⁰)

Muon anomalous magnetic moment (

PR D97, 114025 (2018)

Editors' Suggestion Featured in Physics

Muon g-2 and $\alpha(M_Z^2)$: A new data-based analysis

Alexander Keshavarzi,^{1,*} Daisuke Nomura,^{2,3,*} and Thomas Teubner^{1,‡} ¹Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom ²KEK Theory Center, Tsukuba, Ibaraki 305-0801, Japan ³Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

(Received 6 April 2018; published 25 June 2018)

This work presents a complete reevaluation of the hadronic vacuum polarization contributions to the anomalous magnetic moment of the muon, $a_p^{\text{ind}, \text{VP}}$, and the hadronic contributions to the effective QED coupling at the mass of the Z boson, $\Delta a_{\text{had}}(M_Z^2)$, from the combination of $e^+e^- \rightarrow$ hadrons cross section data. Focus has been placed on the development of a new data combination method, which fully incorporates all correlated statistical and systematic uncertainties in a bias free approach. All available $e^+e^- \rightarrow$ hadrons cross section data have been as lyzed and included, where the new data compilation has yielded the full hadronic *R*-ratio and its covariance matrix in the energy range $m_x \leq \sqrt{s} \leq 11.2$ GeV. Using these combined data and perturbative QCD above that range results in estimates of the hadronic vacuum polarization contributions to g = 2 of the muon of $a_p^{\text{ind}\,\text{LO}\,\text{VP}} = (693.26 \pm 2.46) \times 10^{-10}$ and $a_p^{\text{ind}\,\text{NLO}\,\text{VP}} = (-9.82 \pm 0.04) \times 10^{-10}$. The new estimate for the Standard Model prediction is found to be $a_p^{\text{SM}} = (11659182.04 \pm 3.56) \times 10^{-10}$, which is 3.7σ below the current experimental measurement. The prediction for the five-flavor hadronic contribution to the QED coupling at the Z boson mass is $\Delta a_{\text{ind}}^{(S)}(M_Z^2) = (276.11 \pm 1.11) \times 10^{-4}$, resulting in $\alpha^{-1}(M_Z^2) = 128.946 \pm 0.015$. Detailed comparisons with results from similar related works are given.

DOI: 10.1103/PhysRevD.97.114025

a..-11 659 000 (10⁻¹⁰)

230

new measurement at FNAL is starting with the magnet recycled from BNL

S. Haciomeroglu 5/Jul

7.41

In uniform magnetic field, muon spin rotates ahead of momentum due to $g-2\neq 0$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

In uniform magnetic field, muon spin rotates ahead of momentum due to g-2≠0

$$\omega_{a} = \frac{e}{m} a_{\mu}B$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

J-PARC approach

E = 0 at any γ

In uniform magnetic field, muon spin rotates ahead of momentum due to g-2≠0

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

$$\int_{200 \text{ MeV} < E_{e} < 275 \text{ MeV}} \vec{B} = 0 \text{ at any } r$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

$$J\text{-PARC g-2/EDM measurement}$$

In uniform magnetic field, muon spin rotates ahead of momentum due to g-2≠0

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\sqrt{2} - 1} \right) \vec{\beta} \times \vec{E} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{F}}{c} \right) \right]$$

$$\int_{U}^{V} \frac{1}{\sqrt{2} + \frac{1}{\sqrt{$$

New Muon g-2/EDM Experiment at J-PARC with Ultra-Cold Muon Beam

3 GeV proton beam (333 uA) Graphite target (20 mm)

Surface muon beam (28 MeV/c, 4x10⁸/s)

Muonium Production (300 K ~ 25 meV⇒2.3 keV/c)

Q.L.C.

Surface muon

Super Precision Storage Magnet (3T, ~1ppm local precision)

Muon

storage

Ultra Cold µ+ Source

Resonant Laser Ionization of Muonium (10⁶ μ +/s)

Muon LINAC (300 MeV/c)

Δ (g-2) = 0.1ppm Δ EDM=10⁻²¹ e·cm

J-PARC Muon g-2/EDM

Muon source R&D and Acceleration

- Muonium production with aerogel samples with different sizes of holes
- Acceleration of negative muonium atoms (Mu-) by static electric field and RFQ

PHYSICS

J-PARC Muon g-2/EDM

Muon source R&D and Acceleration

- Muonium production with aerogel samples with different sizes of holes
- Acceleration of negative muonium atoms (Mu-) by static electric field and RFQ

Tau cLFV

New Physics Searches with τ Leptons

- Same physics motivation with muon cLFV searches
- m_{τ} heavier than m_{μ}

PHYSICS

2 0

- Different, perhaps larger, coupling expected to new physics
- More final state types
- Large τ statistics in collider experiments including LHCb

τ LFV searches summary and prospects

PHYSICS

2018

Y. Kwon WIN2017

Summary and Outlook

PHYSICS

FERENCE ON

- > 3σ deviation of muon g-2 in BNL E821 experiment
 - FNAL g-2 started physics DAQ!
 - J-PARC g-2/EDM succeeded initial test of muon acceleration
- MEG limit: $Br(\mu \rightarrow e\gamma) < 4.2x10^{-13}$
 - MEG II engineering run, followed by physics DAQ
- COMET, Mu2e & Mu3e in 2019-202x
- More tau data from Belle II