
Flavor theory & outlook

Svjetlana Fajfer

Physics Department, University of Ljubljana and J. Stefan Institute , Ljubljana, Slovenia

ICHEP 2018, July 4-11, 2018, Seoul

Anomalies

- anomalous muon magnetic moments
- B meson anomalies R_{D(*)}, R_{K(*)}, P₅'

SM contributions to anomalous processes

New Physics explanation

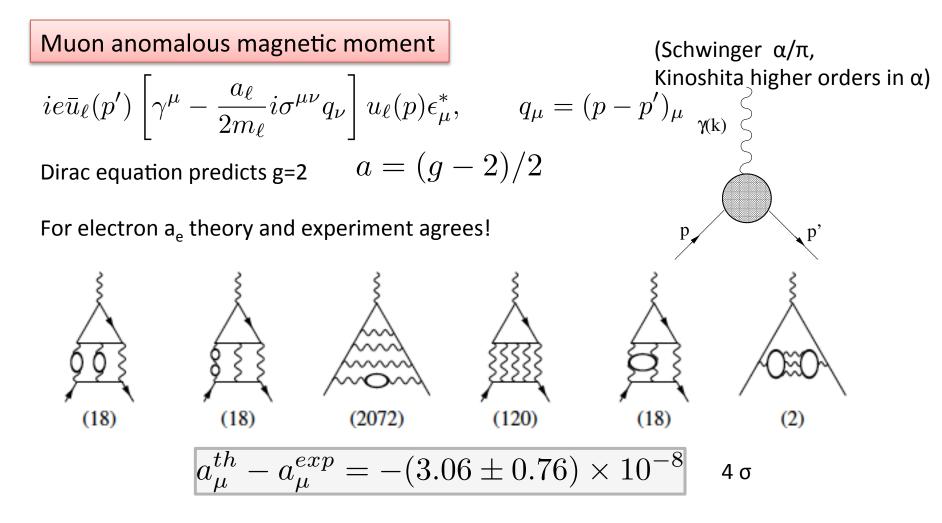
- effective Lagrangian approach
- models of NP
- constraints from low-energy observables & LHC data

?

• NP from B to K

Predictions relevant for LHCb, Belle2 & LHC

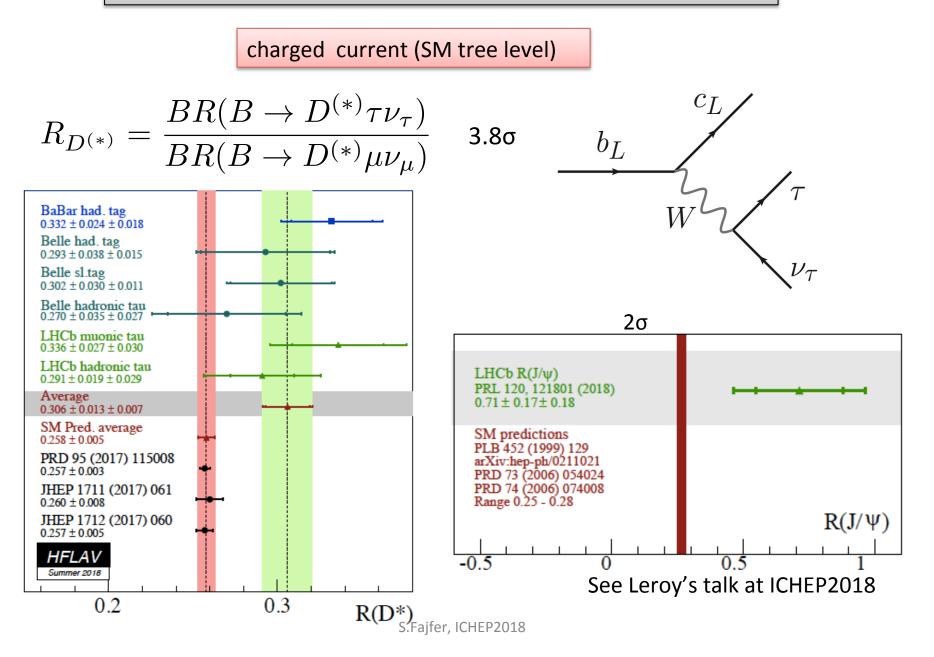
UV complete theories of NP

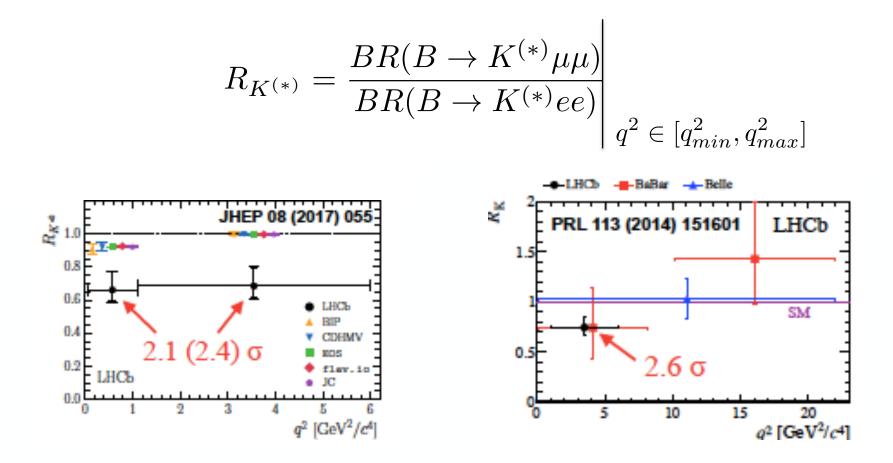

Flavor puzzle

Outlook

Lepton Flavour Universality (LFU)

the same coupling of lepton and its neutrino with W for all three lepton generations! $\begin{pmatrix} \boldsymbol{v}_{e} \\ \boldsymbol{\rho}^{-} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{\mu} \\ \boldsymbol{\mu}^{-} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{\tau} \\ \boldsymbol{\tau}^{-} \end{pmatrix} (\boldsymbol{\tau}^{-} \rightarrow \boldsymbol{\mu}^{-} \bar{\boldsymbol{\nu}}_{\mu} \boldsymbol{\nu}_{\tau}) = \Gamma(\boldsymbol{\tau}^{-} \rightarrow e^{-} \bar{\boldsymbol{\nu}}_{e} \boldsymbol{\nu}_{\tau})$ valid for quarks too! Basic property of the SM: universal g for each of three generations in $\mathcal{L}_f = \bar{f} i D_\mu \gamma^\mu f \quad f = l_L^i, \ q_L^i, \ i = 1, 2, 3$ weak interactions $\mathcal{L}_{eff} = -\frac{G_F}{\sqrt{2}} J^{\dagger}_{\mu} J^{\mu}$ $D_{\mu} = \partial_{\mu} + ig\frac{1}{2}\vec{\tau}\cdot\vec{W}_{\mu} + ig'\frac{1}{2}Y_WB_{\mu}$ $\frac{g^2}{8m_W^2} = \frac{G_F}{\sqrt{2}}$


the same for all SM fermions


Theory: uncertainty in hadronic contributions to the muon g – 2, (Jägerlehner, 1802.08019). Lattice QCD great progress light-by-light study (RBC & UKQCD, 1801.07224).

Fermilab and J-Park experiments are expected to clarify existing discrepancy!

B physics anomalies: experimental results ≠ SM predictions!

FCNC - SM loop process: R_{K(*)} anomaly

 P_5' in $B \to K^* \mu^+ \mu^-$ (angular distribution functions) 3σ (see Capriotti talk LHCb: the discrepancy present in $B_s \to \phi \mu \mu$ and $\Lambda_b \to \Lambda \mu \mu$ at ICHEP2018)

R_{D(*)} in SM- hadronic uncertaintoes

SM: $R_{\rm D} = 0.299 \pm 0.03$

$$< D | \bar{c} \gamma_{\mu} b | B >$$

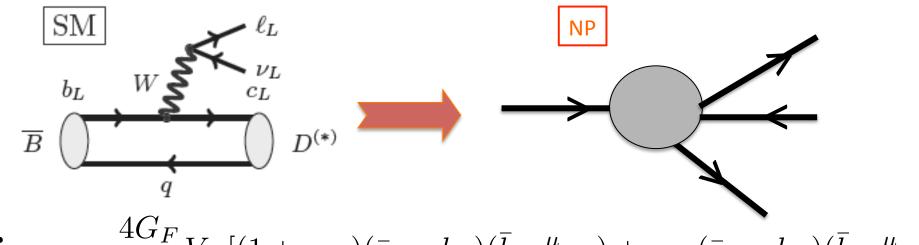
- two form factors,
- complete information comes from lattice QCD; (Fermilab Lattice and MILC Collaborations J. A. Bailey et al. 1503.0 7237).

$$< D^* | \bar{c} \gamma_\mu (1 - \gamma_5) b | B > 4$$

no full lattice QCD result yet!

FLAV 2018

SM: R_{D*} =0.258± 0.005


We do need lattice QCD form factors!

Caprini et al.,hep-ph/9712417, R_{D*}=0.252(3,) SF et al, 1203.2654, Boyd et al., hep-ph/9504235, better in explaining |V_{cb}| inclusive/ exclusive difference 1702.01521

D.Bigi, et al., 1606.08030, 1707.09509, F.Bernlochner et al., 1703.05330, S.Jaiswal et al., 1707.09977.

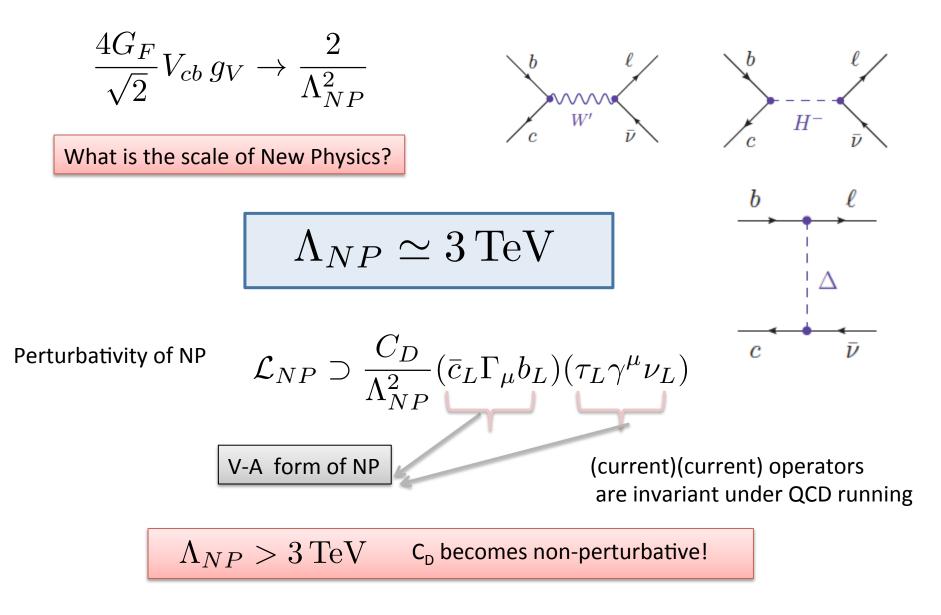
HQET

Effective Lagrangian approach for $b ightarrow c au u_{ au}$ decay

$$\mathcal{L}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{cb} [(1+g_{V_L})(\bar{c}_L\gamma_\mu b_L)(\bar{l}_L\gamma^\mu\nu_L) + g_{V_R}(\bar{c}_R\gamma_\mu b_R)(\bar{l}_L\gamma^\mu\nu_L)]$$

$$+g_{S_R}(\bar{c}_L b_R)(\bar{l}_R \nu_L) + g_{T_R}(\bar{c}_L \sigma_{\mu\nu} b_R)(\bar{l}_R \sigma^{\mu\nu} \nu_L)]$$

has all symmetries of the SM


e.g: many authors favorable solution

$$0.09 \le g_{V_L} \le 0.13$$

Freytsis, et al., 1506.08896, S.F. et al.,1206.1872;
Di Luzio & Nardecchia, 1706.01868,
Bernlochner et al., 1703.05330,
F. Feruglio et al., 1806.10155, 1606.00524

(see Grelljo et al. (1804.0462) for \mathcal{L}_{eff} with v_{R} !)

Assuming NP at scale Λ_{NP} (Di Luzio, Nardecchia, 1706.0!868)

Hiller et al., 1609.08895 R_{D(*)}

Scalar and Tensor operators in R_{D*}

V-A is not the only one solution!

Recent:

Feruglio et al., 1806.10155 g_{SL} , g_T Becirevic et al., 1806.05689Hiller et al., 1609.08895

Scalar operator gets strong constraints from $\Gamma_{NP}(B_c\to\tau\nu)\simeq 30\%$ Alonso et al., 1611.06676

0.5 $\mu = m_b$ 0.4 0.3 R_D 0.2 g_T 0.1 0.0 -0.1 $B_c \rightarrow \tau \nu$ R_{D^*} -0.2-1.0-0.50.0 0.5 1.0

 g_{S_L}

 C_{T}^{\prime}

 t_L

 ℓ_L

 t_L

 m_t

 ℓ_R

 t_R

Feruglio et al., 1806.10155

the muon g - 2 can be explained only if the tensor couplings are hierarchical

 $|C_T^{\tau}| \gg |C_T^{\mu}| \ge |C_T^{e}|$

$$b
ightarrow s \mu^+ \mu^-$$
in SM

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1}^6 C_i(\mu) \mathcal{O}_i(\mu) + \sum_{i=7,\dots,10} \left(C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu) \right) \right]$$

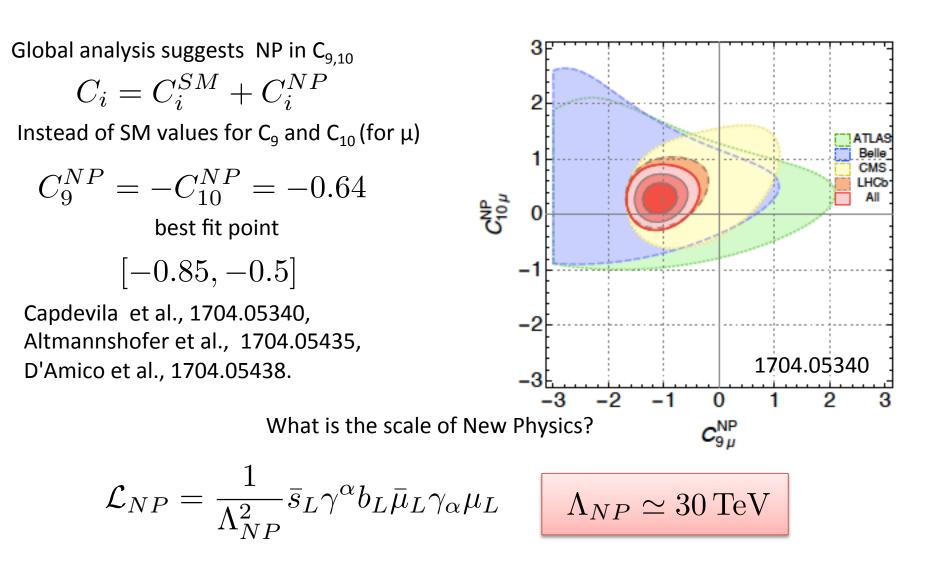
1 ...

$$\mathcal{O}_{7} = \frac{e}{g^{2}} m_{b} \bar{s} \sigma_{\mu\nu} F_{\mu\nu} b$$

$$\mathcal{O}_{9} = \frac{e^{2}}{g^{2}} \bar{s} \gamma_{\mu} b(1 - \gamma_{5}) b \bar{l} \gamma^{\mu} l$$

$$\mathcal{O}_{10} = \frac{e^{2}}{g^{2}} \bar{s} \gamma_{\mu} b(1 - \gamma_{5}) b \bar{l} \gamma^{\mu} \gamma_{5} l$$

$$B \downarrow^{\dagger} \gamma^{\mu} \gamma_{5} l$$

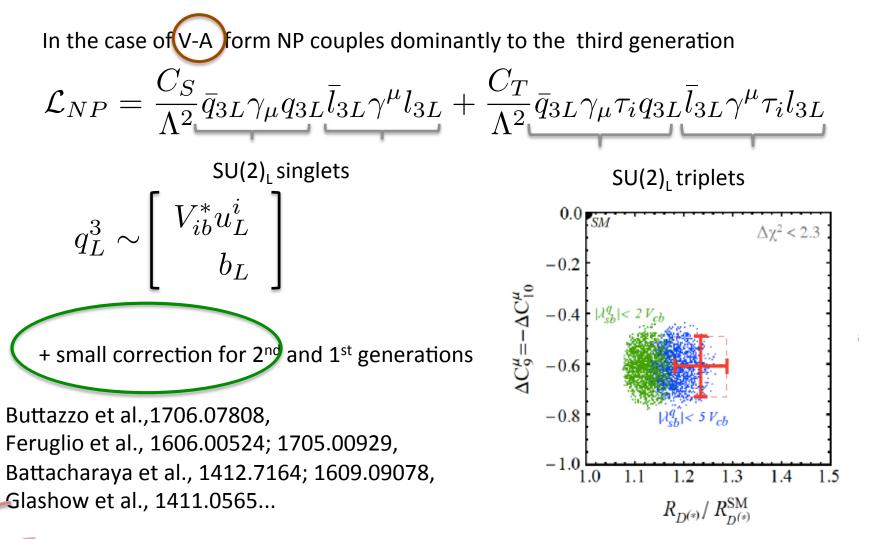

$$B \downarrow^{\dagger} \gamma^{\mu} \gamma_{5} l$$

$$B \downarrow^{\dagger} \gamma^{\mu} \gamma_{5} l$$

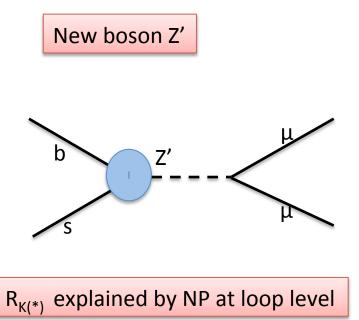
 $\mu_b = 4.8 \,\text{GeV} \qquad C_7^{SM} = 0.29; \, C_9^{SM} = 4.1; \, C_{10}^{SM} = -4.3;$

Buras et al., hep-ph/9311345; Altmannshofer et al., 0811.1214; Bobeth et al., hep-ph/9910220

NP in R_{κ} and R_{κ^*}



(see Mauri's talk at ICHEP2018)


NP explaining both B anomalies

$$\begin{split} R_{D^{(*)}}^{exp} > R_{D^{(*)}}^{SM} & R_{K^{(*)}}^{exp} < R_{K^{(*)}}^{SM} \\ \mathcal{L}_{NP} &= \frac{1}{(\Lambda^D)^2} 2 \, \bar{c}_L \gamma_\mu b_L \bar{\tau} \gamma^\mu \nu_L & \mathcal{L}_{NP} &= \frac{1}{(\Lambda^K)^2} \bar{s}_L \gamma_\mu b_L \bar{\mu}_L \gamma^\mu \mu_L \\ & \Lambda^D &\simeq 3 \, \text{TeV} & \Lambda^K &\simeq 30 \, \text{TeV} \\ & \Lambda^D &= \Lambda & \text{If the scale is the same } \Lambda^D &\sim \Lambda^K \\ & \Lambda^D &= \Lambda & \frac{1}{(\Lambda^K)^2} = \frac{C_K}{\Lambda^2} & C_K \simeq 0.01 \\ & \text{suppression factor} \end{split}$$

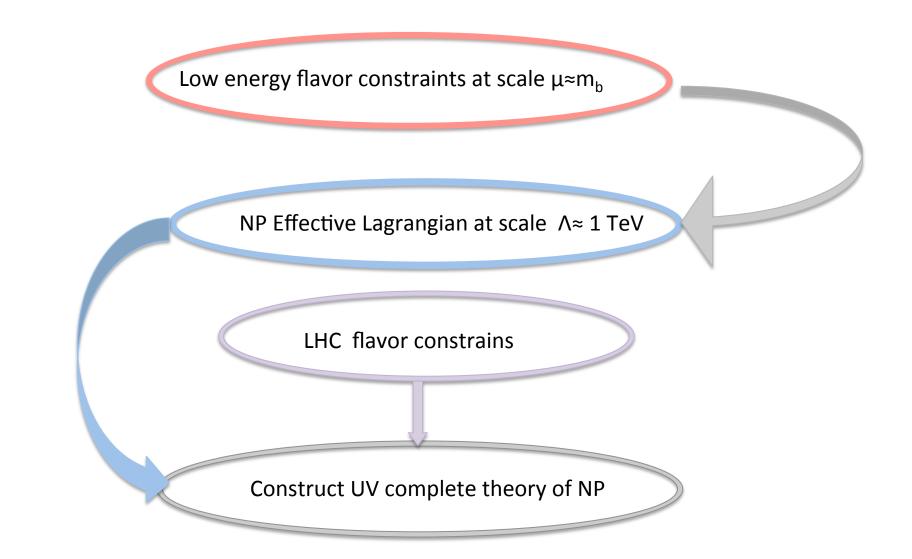
How to achieve suppression of NP in $R_{K(*)}$?

Lepton flavor non-universality Lepton flavor violation Flavor constraints allow only ~ 10-15 % increase in $R_{D(\ast)}$

- different origin of Z', e.g. by gauging L_μ- L_τ,
 Altmannshofer et al, 1403.1269,
- New Z'+ new vector-like quarks (UV complete theories) Kamenik et al., 1704.06005,
- Fermiophobic Z', couples to 4th generation of the vector-like fermions, Falkowski et al, 1803.04430...

see Tandean's talk at ICEHEP2018!

Bauer&Neubert, 1511.01900, + muon (g-2) Bečirević et al, 1608.07583, strong constraints from charm, K, leptonic decays and $B \rightarrow D^{(*)}e(\mu)\nu$


If the same NP in $R_{D(*)}$ and $R_{K(*)}$ suppression factor from the loop

Constraints from flavor observables

 $(g-2)_{\mu}$ $B_c \to \tau \nu \quad B \to \tau \nu$ $\tau
ightarrow \mu \gamma$ $B \to K^{(*)} \nu \overline{\nu}$ $\mu \to e\gamma$ $B_{s}^{0} - \bar{B}_{s}^{0}$ Z' $\tau \to K(\pi)\mu(e)$ \overline{B}_{s} $D^{0} - \bar{D}^{0}$ $K \to \mu e$ $B \to D \mu \nu_{\mu}$ $B \to K \mu e$ $K \to \mu \nu_{\mu}$ $D_{d,s} \rightarrow \tau, \mu \nu$ $\tau \to \mu \mu \mu$ $K \to \pi \mu \nu_{\mu}$ $\tau \to \phi \mu$ $W \to \tau \bar{\nu}, \ \tau \to \ell \bar{\nu} \nu$ $t \to c\ell^+\ell'^ Z \to b\bar{b} \qquad Z \to l^+ l^-$

Constraints from LFV

Becirevic et al., 1806.05689, 1608.07583, 1608.08501, Alonso et al., 1611.06676,... Radiative constraints Feruglio et al., 1606.00524;

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong." Richard P. Feynman Models at TeV scale explaining both B anomalies

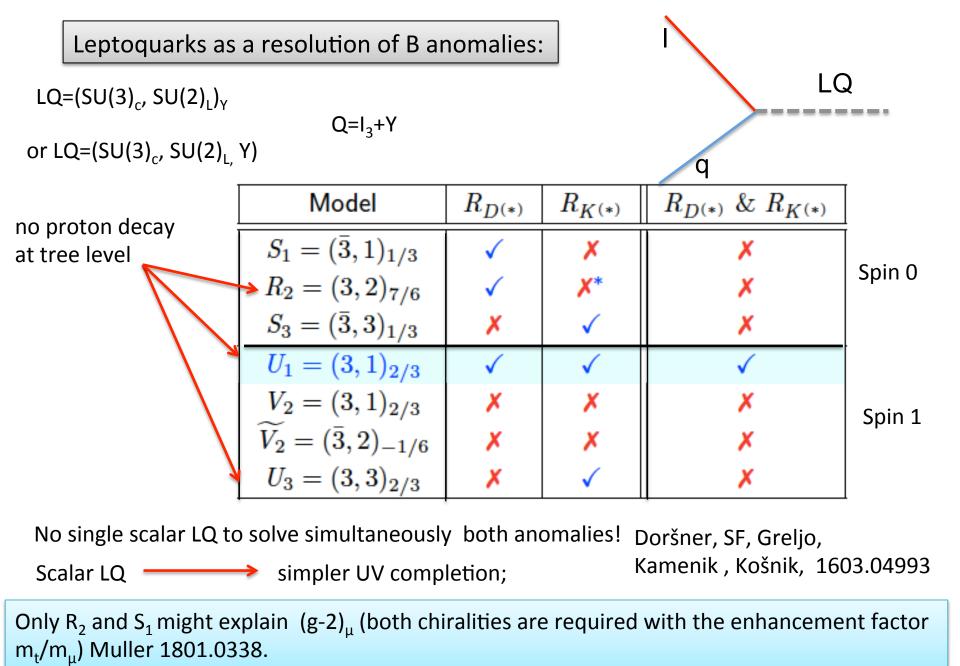
Scalar LQ as pseudo-Nambu-Goldstone boson

Gripaios et al, 1010.3962, Gripaios et al., 1412.1791, Marzocca 1803.10972...

Models with scalar LQs

Hiller & Schmaltz, 1408.1627, Becirevic et al. 1608.08501, SF and Kosnik, 1511.06024, Becirevic et al., 1503.09024, Dorsner et al, 1706.07779, Cox et al., 1612.03923, Crivellin et al.,1703.09226...

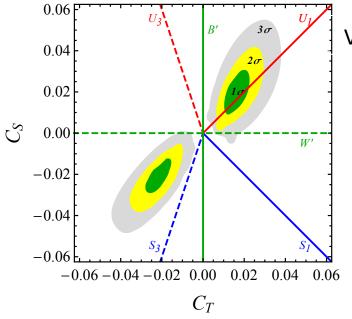
W', Z' in warped space


Megias et al.,1707.08014

Vector resonances (from techni-fermions)

Barbieri et al.,1506.09201, Buttazzo et al. 1604.03940, Barbieri et al., 1611.04930 Blanke & Crivellin, 1801.07256,...

Gauge bosons


Greljo et al., 1804.04642 Cline, Camalich, 1706.08510 Calibbi et al.,1709.00692 Assad et al., 1708.06350 Di Luzio et al.,1708.08450 Bordone et al.,1712.01368, 1805.09328...

Only one LQ mediator

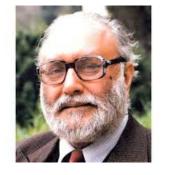
$$\mathcal{L}_{NP} = \frac{C_S}{\Lambda_{NP}^2} \bar{q}_{3L} \gamma_\mu q_{3L} \bar{l}_{3L} \gamma^\mu l_{3L} + \frac{C_T}{\Lambda_{NP}^2} \bar{q}_{3L} \gamma_\mu \tau_i q_{3L} \bar{l}_{3L} \gamma^\mu \tau_i l_{3L}$$

Buttazzo, Greljo, Isidori, Marzocca (1706.07808)

Vector leptoquark $U_1(3,1,2/3)$ passes all tests

If vector LQ is not a gauge boson – difficult to handle!

(see also Alonso et al., 1505.05164, Di Luzio et al., 1708.08450; Bordone et al., 1712.01368; Callibi et al., 1709.00692)


Scale of NP should be 1.5 TeV!

GUT Pati-Salam Model for $U_1(3,1,2/3)$ gauge group SU(4) x SU(3)' x SU(2)_L x U(1)' spontaneosly broken gauge theory

Di Luzio et al., 1708.08450 Calibbi et al., 1709.00692 Blanke and Crivellin, 1801.07256.

Bordone et al., 1712.01368, 1805.0932

$$[PS]^3 = [SU(4) \times SU(2)_L \times SU(2)_R]^3$$

SU(4) means quarks carry 3 colours and leptons have the fourth colour.

in these models R_{D(*)} gets additional non V-A contributions

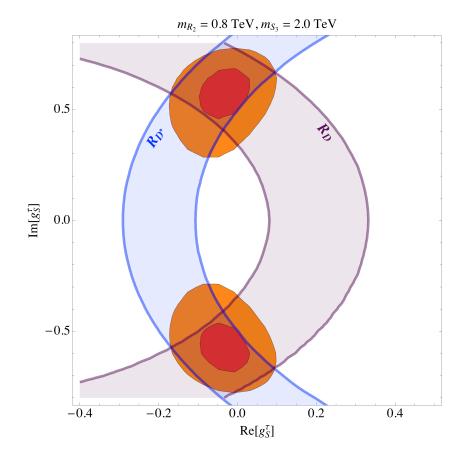
Leads to explanation of the masses of fundamental fermions "flavor puzzle".

Many new gauge bosond:

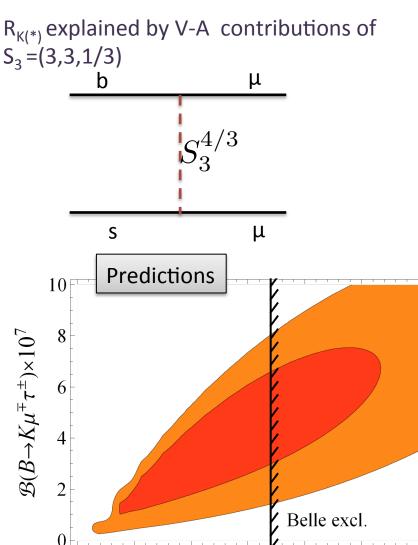
new colored octet, a triplet and three SM singlets; their masses ~ TeV region

 $M_{Z'}$ = 1.3 TeV, M_U = 1.5 TeV, and $M_{g'}$ = 1.9 TeV.

Unification scale rather low ~10⁶ GeV. No proton decays!


Two scalar LQs solution of $R_{D(*)}$ and $R_{K(*)}$

Why 2 LQs?


- GUT possible with 2 light scalar LQs within SU(5);
- LQ S₃ within SU(5) proton decay avoided, Doršner et al., 1706.07779;
- Neutrino masses generated with 2 light LQs (Doršner et al., 1701.08322).

$$\begin{array}{c} (3,3,1/3) + (3,1,-1/3) \\ \text{Crivellin et al., 1703.09226,} \\ \text{Marzocca, 1803.10972.} \end{array} \quad V-A \text{ form} \\ & b \quad y_{b\tau}^R \quad \tau \\ \hline b \quad y_{b\tau}^R \quad \tau \\ \hline R_2(3,2,7/6) \quad \text{scalar and tensor in } R_{D(*)} \\ + \text{and small contribution of } S_3 = (3,3,1/3) \quad c \quad y_L^{c\nu} \quad \upsilon \\ C_{\text{eff}} = -\frac{4 \ G_F}{\sqrt{2}} V_{cb} \left[(1 + g_V) (\bar{u}_L \gamma_\mu d_L) (\bar{\ell}_L \gamma^\mu \nu_L) + g_S(\mu) (\bar{u}_R d_L) (\bar{\ell}_R \nu_L) \\ \quad + g_T(\mu) (\bar{u}_R \sigma_{\mu\nu} d_L) (\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \right] + \text{h.c.} \end{array}$$

Becirevic, Dorsner, S. F, Faroughy, Kosnik and Sumensari 1806.05689, Hiller, Loose, Schoenwald 1609.08895

Only 4 parameters (one of them complex- $y^{b\tau}_{R}$) from Yukawa couplings and masses of R_2 and S_3 . R_2 and S_3 are in the same GUT representation. Important: the largest couplings are ≤ 1

Important to improve current bounds by Belle 2 and LHCb !

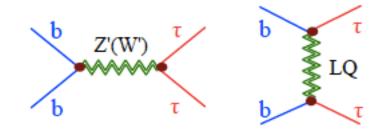
1.0

1.5

2.0

2.5

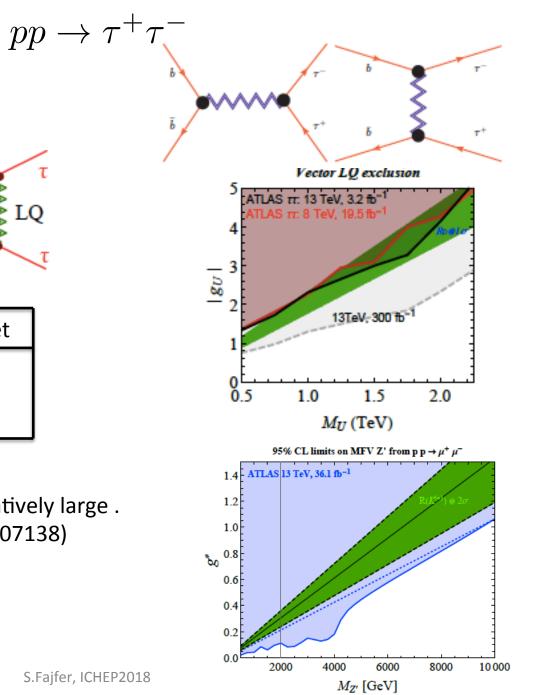
 $R_{\nu\nu}^{(*)} = \mathcal{B}(B \rightarrow K^{(*)}\nu\nu)/\mathcal{B}(B \rightarrow K^{(*)}\nu\nu)^{\mathrm{SM}}$

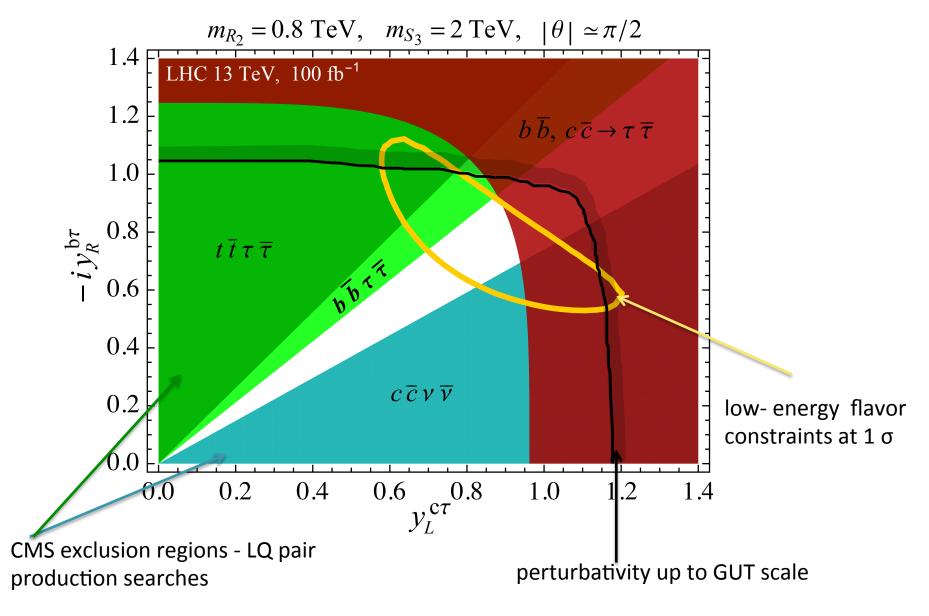

3.0

3.5

4.0

LHC constraints on NP

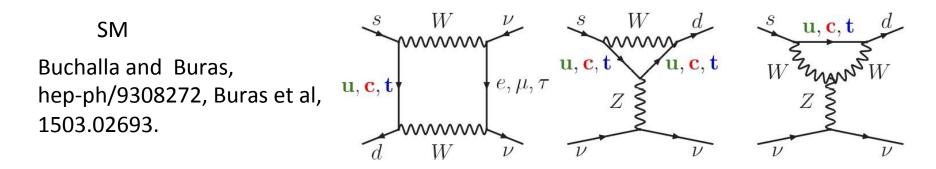

Processes in s and t-channel



	Color singlet	Color triplet
Scalar	2HDM	Scalar LQ
Vector	W'	Vector LQ

LQs in B puzzles st , bt and ct are relatively large . (Faroughy, Greljo and Kamenik, 1609.07138)

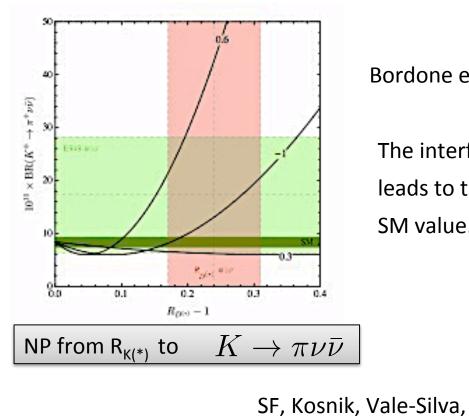
 $R_{K(*)}$ and LHC searches (Greljo and Marzocca, 1704.09015)



Becirevic et al., 1806.05689

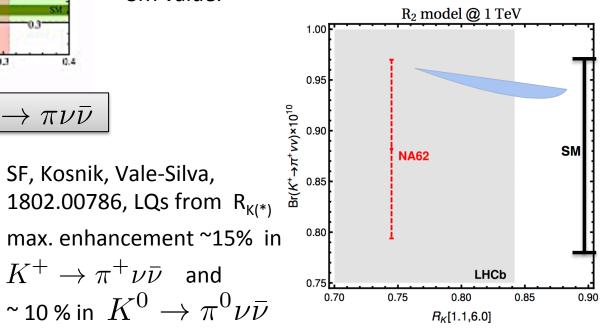
 $K \to \pi \nu \bar{\nu}$

The "cleanest" rare K meson decay- SM SD contribution dominates over LD

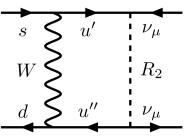

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{\rm SM} = (8.4 \pm 1.0) \times 10^{-11}$$
$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{\rm SM} = (3.4 \pm 0.6) \times 10^{-11}$$

present experiments:

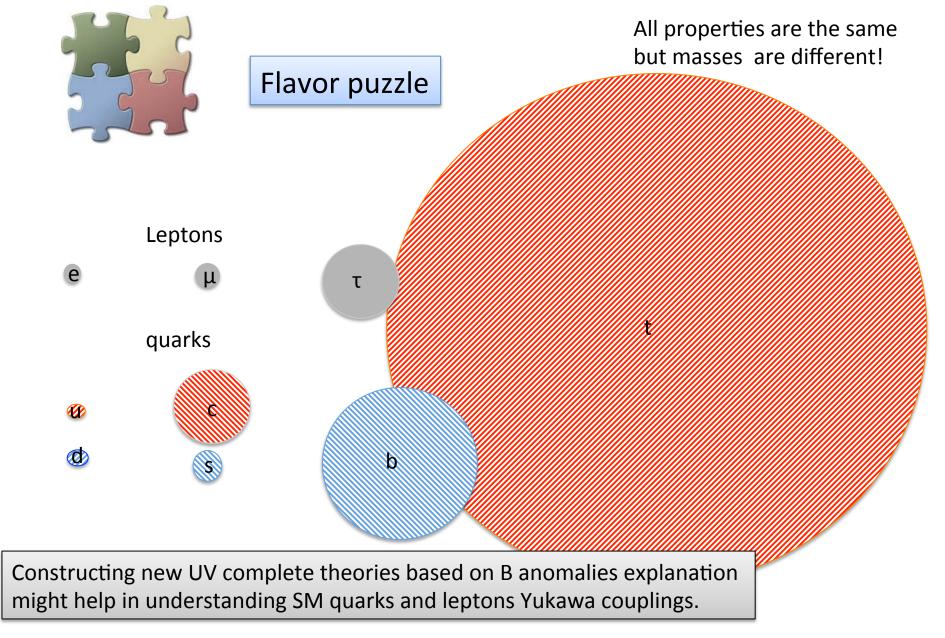
- $K^+ \rightarrow \pi^+ \nu \nu$: NA62 experiment at CERN
- $K_L \rightarrow \pi^0 vv$: KOTO experiment at JPARC


$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{\text{exp}} = 17.3^{+11.5}_{-10.5} \times 10^{-11},$$

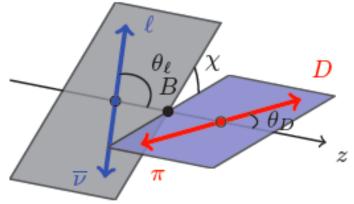
$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{\text{exp}} \le 2.6 \times 10^{-8} \qquad (90\% \,\text{CL})$$


NP from $R_{D(*)}$ to $K \to \pi \nu \bar{\nu}$

Bordone et al, , Buttazzo, Isidori, Monnard, 1705.10729,

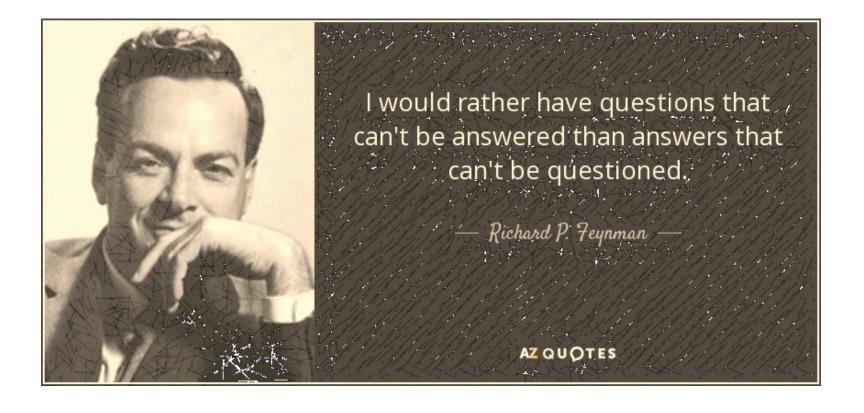

The interference of NP with the SM amplitude leads to the suppression ~ 30%, relative the SM value.

S.Fajfer, ICHEP2018


 $K^+
ightarrow \pi^+
u \bar{
u}$ and

Barbieri et al. 1512.01560, Smith at ICHEP 2018, 1612.03825,...

Outlook


- We have to wait on Belle 2 & LHCb new results on $R_{D(*)}$ and $R_{K(*)}$ and Fermilab and J-PARC on $(g-2)_{\mu}$;
- Necessary Lattice QCD results on $B \rightarrow D^*$ form factors and $Bc \rightarrow J/\psi$;
- To measure all possible observables in angular correlations
 Differential decay distribution
 Forward-backward asymmetry
 Lepton polarization asymmetry
 Partial decay rate according to the polarization of D*;
- To test all possible observable in all $b \rightarrow s \mu \mu$ processes;

• If there is NP in $R_{D(*)}$ and $R_{K(*)}$, it have to be present in

$$\begin{array}{lll} B \to K^{(*)} \nu \bar{\nu} & \tau \to \mu \gamma \\ & \tau \to 3 \mu \\ K \to \pi \nu \bar{\nu} & B \to K^{(*)} \tau \mu \\ & B \to \tau \mu \end{array}$$

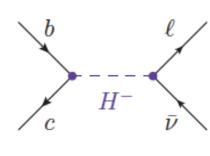
- Further test of all flavor couplings at LHC;
- To check LFU in the first and second generations as precise as possible- below 1%!
- Continue to build effective Lagrangian approaches as well as NP models.

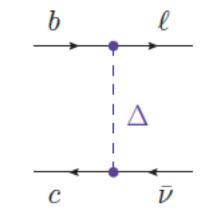
Thanks!

$$\begin{array}{ll} \mbox{CP violation in } K \to \pi\pi \\ \mbox{Exp.} & \frac{\epsilon'}{\epsilon} = (16.6 \pm 2.3) \times 10^{-4} & \mbox{NA48, hep-ex/0208009} \\ \mbox{SM} & & \left[\begin{array}{c} (1.1 \pm 5.1) \times 10^{-4} & \mbox{KTeV, [hep-ex/0208007, 0909.2555.} \\ (1.1 \pm 5.1) \times 10^{-4} & \mbox{Kitahara et al., 1607.06727,} \\ \mbox{Buras et al., 1507.06345,} \\ (15 \pm 7) \times 10^{-4} & \mbox{Gisbert \& Pich, 1712.06147.} \\ \mbox{Re} \frac{\epsilon'}{\epsilon} = 1.38(5.15)(4.59) \times 10^{-4} & \mbox{RBC and UKQCD Collaborations} \\ \mbox{1505.07863.} \end{array} \right]$$

$$\epsilon'/\epsilon = (\epsilon'/\epsilon)_{SM} + (\epsilon'/\epsilon)_{NP}$$


Is there any possibility to see NP?


Need non-zero couplings to first generation Need imaginary couplings Need both left-handed and right-handed couplings


Analitic calculations of $K \to \pi \pi$ within DQCD, Aebischer et al., general SU(3)_c x U(1)_{QED} structure, 40 operators (1807.01709) – might help in clarifying NP contributions.

Expecting future improvements by lattice QCD

Proposals of NP in $R_{D(*)}$:

A.Greljo et al, 1804.04642, S.F. , J.F.Kamenik, Nišandžić, 1203.2654 S.F. J.F. Kamenik, I. Nišandžić, J. Zupan, 1206.1872 Körner& Schuller, ZPC 38 (1988) 511, Kosnik, Becirevic, Tayduganov, 1206.4977 D. Becirevic, S.F. I. Nisandzic, A. Tayduganov, 1602.03030, Fretsis et al, 1506.08896, S. Faller et al., 1105.3679, Sakai&Tanaka, 1205.4908. Biancofiore , Collangelo, DeFazio 1302.1042, R.Alonso et al, 1602.0767,Bardhan et al., 1610.03038

Di Luzio Nardecchia, 1706.0!868, Crivellin etal, 1703.09226, Blanke&Crivellin,1801.07256, Biswas et al, 1801.03375, Freytsis et al, 150608896, Sakaki et al, 1309.0301, Celis et al, 1612.07757, Altmannshofer et al, 170406659

> Impossible to write all references. My apology to all authors not written here

NP in K and D physics

- strong constraints from atomic parity violation, LFU holds at 1% level for π and K it suggest to avoid coupling of NP to the first generation;
- in K and D FCNC decays usually long distance physics overshadow short distance dynamics;

 $M_{LD} > M_{SM}$

Any NP in B anomalies constrained by

$$\begin{bmatrix} K^0 - \bar{K}^0 & K \to l\nu_l \\ D^0 - \bar{D}^0 & D_s \to l\nu_l \end{bmatrix}$$

How large can be effects of NP explaining B anomalies in K and D charged current and FCNC rare decays having in mind existing and planned experimental precision?

$$D_s \to l \nu_l$$

In charm meson leptonic decays LQ explaining B anomalies give ~ 1-2 % modification od the decay width.