Design study of a Split-Coaxial RFQ for IsoDAR

Jungbae Bahng

Korea University / Massachusetts Institute of Technology

ICHEP 2018, Seoul, Korea

July 6th, 2018

Outline

- Introduction & Motivation of the IsoDAR project
- Accelerator system for the IsoDAR
 - Layout of the IsoDAR project
 - IS & LEBT / Spiral Inflector / Cyclotron
- RFQ design
 - Briefly Principle of a RFQ
 - Considerations
 - Design results and features
- Next step & Summary

Introduction & motivation

- IsoDAR (Isotope Decay-At-Rest Experiment) will be the first stage of DAEδALUS, utilizing the DAEδALUS Injector Cyclotron (DIC) to search for physics beyond the standard model.
- Two main scientific goals:
- Sterile neutrino searches
- Non-standard interaction searches

Search for sterile neutrinos through oscillations at short

distance and low energy

lassachusetts Institute of Technology

Introduction & motivation

IBD : Inverse Beta Decay

Layout of the IsoDAR accelerator system

Layout of the IsoDAR accelerator system

Why we choose H₂+ ion beam

• 10 mA of protons do not want to be crowded together in a bunch! (Repulsive force)

$$E_{x} = \frac{1}{4\pi\varepsilon_{0}} \frac{3I\lambda}{C\gamma^{2}} \frac{(1-f)}{r_{x}(r_{x}+r_{y})r_{z}} X, \qquad E_{y} = \frac{1}{4\pi\varepsilon_{0}} \frac{3I\lambda}{C\gamma^{2}} \frac{(1-f)}{r_{y}(r_{x}+r_{y})r_{z}} Y,$$

where, r_x , r_y and r_z are the semi-axes of the ellipsoid, I is average current, f is a form factor (f are given by p and 1/p)

• Since high beam intensity and slow beam velocity, space charge effect makes emittance growth. ($F_{sc} \sim \gamma^{-2}$)

■ In the low energy region, we need to consider carefully space charge effect

✓ Solution!

Two units of charge for one in the low energy region Remove electron by stripping in the high energy region

→ get two protons

Helps with Injection and Low Energy Beam Transport

Ion Source

- Based on: Ehlers and Leung: http://aip.scitation.org/doi/10.1063/1.1137452
- Currently commissioning at MIT (at the moment: 17 mA/cm²)

Extraction system for RFQ-DIP

Preliminary simulation by Loyd H. Waites,
 Ph.D. student at MIT

Simulation code : IBSimu

• Components : Two Einzel lenses

Objectives : Matching beam parameters

as the RFQ requirement

- Segmented for steering
- Next: Detailed simulation study & Technical design

Layout of the IsoDAR accelerator system

Spiral Inflector

- Preliminary simulation by Daniel Winklenhner, Postdoc. at MIT
- Simulation code : OPAL and Inventor3D
- Structure : Twisted shape of electrodes

Objectives: Convert beam trajectory from vertical to horizontal direction

Ref. Daniel Winklehner, et. al., PRAB 20, 124201 (2017)

"Realistic simulations of a cyclotron spiral inflector within a particle-in-cell framework"

Cyclotron

• DIC is four-sector machine, with a pole radius of 220 cm, vertical gap of 10 cm to improve high intensity beam production.

Ref. Cooperation with AIMA in France for central region design

Outline in RFQ design

- Introduction & Motivation of the IsoDAR project
- Accelerator system for the IsoDAR
 - Layout of the IsoDAR project
 - IS & LEBT / Spiral Inflector / Cyclotron
- RFQ design
 - Briefly Principle of a RFQ
 - Considerations

Basic principle of an RFQ accelerator

- Quadrupole electrode driven AC voltage, makes alternating transverse focusing like a FODO lattice.
- Perturbation in quadrupole electrodes makes longitudinal field for acceleration and bunching.
- The derivative longitudinal electric field makes longitudinal bunching and ion beam acceleration.

Considerations for the IsoDAR RFQ

Parameters	Value	Unit
Particle (A/q)	H_2^+ (2)	
Beam intensity @ target	10	mA
Operation frequency	32.8	MHz
Input beam energy	7.5	keV/u
Output beam energy	35	keV/u
Initial rms emittance	0.3	pi mm-mrad
Chamber diameter	< 30	cm
Longitudinal emittance	< 42	pi keV-deg
Length	< 150	cm

Design parameters in the RFQ

Design results of the beam dynamics

Elements	Unit	Design parameters
Frequency	MHz	32.8
Particle	A/q	H ₂ ⁺ (2)
Length	mm	1378.69
No. of cells		58
Transmission rate	%	97.27
Beam energy	keV	$15 \rightarrow 70$
Input Trans. emit (rms, norm)	mm-mrad	0.3000
Trans. emittance (rms, norm)	mm-mrad	0.3427
Long. emittance (rms)	keV-deg	40.24
Vane voltage	kV	20.14
min. vane-tip aperture	mm	6.83
vane-tip curvature	mm	9.30
r ₀ , mid-cell aperture	mm	9.30
Octupole term		0.070

VERSITY

Emittances in RFQ

Beam distribution at the end of RFQ

Considerations for the IsoDAR RFQ

Parameters	Value	Unit
Particle (A/q)	H_2^+ (2)	

How to minimize transverse size of RFQ cavity?

Output beam energy	35	keV/u
Initial rms emittance	0.3	pi mm-mrad
Chamber diameter	< 30	cm
Longitudinal emittance	< 42	pi keV-deg
Length	< 150	

Split-coaxial RFQ

• Merit:

- Large inductance compared with another structure $\omega \propto \frac{1}{\sqrt{LC}}$
- Suitable for a low frequency RFQ.

• Demerit:

- Long electrode are supported only at one point on the end-wall of the cavity
- Difficult to install the vans directly.
- Solutions
 - Support each vane at points more than two
 - Called as multi-module cavity structure

Elements	Values	Units	Elements	Values	Units
R , cavity radius	120	mm	l_1 , horizontal vane length	1353.07	mm
r , electrode radius	9.30	mm	l_2 , vertical vane length	1370.34	mm
d , electrode distance	37.2	mm	L, cavity length	1378.69	mm
g ₁ , gap b.t.w h. vane and cavity	25.62	mm	t, cavity thickness	20	mm
$\mathbf{g_2}$, gap b.t.w v. vane and cavity	8.35	mm	s, vane skirt max thickness	30	mm
p , vane skirt position	60	mm	h , vane skirt min thickness	10	mm

Split-Coaxial RFQ

RF simulation result re-scaled as from 1.0 J to 0.165 J

✓ We obtained same field distributions from static and eigen mode analysis

EM field dist. in Split-Coaxial RFQ

✓ The special magnetic field distributions give advantage of a small resonance frequency with small diameter of cavity.

Layout of the IsoDAR accelerator system

Why we need re-bunching

- ✓ Longitudinal phase distributions increase quickly right after exit of the RFQ.
- ✓ We don't want to install MEBT for focusing beam between RFQ and Cyclotron
- ➤ We try to add re-buncher cell in the transition cell of the RFQ.

Rebuncher design

In order to separate RFQ and rebuncher field distributions, trapezoidal modeling employed.

cell length : $\beta_{rel} \lambda_{free}$

= 7.894 cm

Page 27

Electrostatic field distributions

re-buncher position scan

Beam dynamics with re-buncher

Beam dynamics with re-buncher

Next step

Summary

- We have shown preliminary designs and simulations show achieving high efficient injection into the cyclotron.
- We designed RFQ has 40 keV-deg of tiny longitudinal emittance to be accepted in cyclotron with 1.4 meter long.
- By applying split-coaxial model, IsoDAR RFQ satisfies small diameter restriction as 24 cm at 32.8 MHz of operation frequency.
- To avoid longitudinal phase increment right after RFQ, re-buncher is added in the RFQ transition cell.
- Re-buncher employed trapezoidal shape to increase bunching efficiency and separate main RFQ field distribution.
- Start-to-End simulation from IS to cyclotron needed as next step.

Thank you for your attention! Have a fun time in the Korea.

